PENERAPAN METODE HIRADC DALAM PENGENDALIAN RISIKO KECELAKAAN KERJA PEMERIKSAAN HARIAN SARANA LRT SUMATERA SELATAN

Muh Rizki Ramadhani

Politeknik Perkeretaapian Indonesia Madiun Jl. Tirta Raya, Pojok, Nambangan Lor, Kec. Manguharjo, Madiun, Jawa Timur 63161 Rizki.mtp20204132@taruna.ppi.a c.id

Handoko1

Politeknik Perkeretaapian Indonesia Madiun Jl. Tirta Raya, Pojok, Nambangan Lor, Kec. Manguharjo, Madiun, Jawa Timur 63161 handoko@ppi.ac.id

Erifendi Churniawan

Politeknik Perkeretaapian Indonesia Madiun Jl. Tirta Raya, Pojok, Nambangan Lor, Kec. Manguharjo, Madiun, Jawa Timur 63161 erifendi@ppi.ac.id

Abstract

Light Rail Transit South Sumatra was built based on Presidential Regulation Number 55 of 2016 concerning the Acceleration of Implementing Light Railroad/Light Rail Transit in South Sumatra Province. To always maintain the reliability of the LRT facility, daily inspection work of the LRT facility is required, which is carried out every day which has a potential risk of work accidents due to the use of equipment related to electricity and standard operating procedures (SOPs) that are not followed. This study aims to identify potential risks, determine the value of risks, arrange priority rankings, and analyze risk controls to reduce the impact of risks on the daily inspection work of the South Sumatra LRT facilities. This study analyzed using the method of hazard identification, risk assessment, and determining control (HIRADC). Based on the research, there are 18 risks with risk level classifications: 1 extreme risk, 7 high risk, 9 moderate risk, and 1 low risk. The determination of risk control is carried out according to the risk control hierarchy, namely engineering, administrative control, and the use of personal protective equipment (PPE).

Keywords: Potential hazards, Risks, Daily inspection of South Sumatra LRT facilities, Work safety, HIRADC

Abstrak

Light Rail Transit Sumatera Selatan dibangun atas dasar Peraturan Presiden Nomor 55 Tahun 2016 Tentang Percepatan Penyelenggaraan Kereta Api Ringan/ Light Rail Transit di Provinsi Sumatera Selatan. Untuk selalu menjaga keandalan dari sarana LRT Sumsel maka diperlukan pekerjaan pemeriksaan harian sarana LRT yang dilakukan setiap harinya yang mana memiliki potensi risiko kecelakaan kerja dikarenakan menggunakan peralatan yang berhubungan dengan listrik dan standar operasional prosedur (SOP) yang tidak dijalankan. Penelitian ini bertujuan untuk mengidentifikasi potensi risiko, mengetahui nilai risiko, menyusun rangking prioritas, serta menganalisis pengendalian risiko untuk mengurangi dampak risiko pada pekerjaan pemeriksaan harian sarana LRT Sumsel. Penelitian ini melakukan analisis menggunakan metode hazard identification, risk assessment, and determining control (HIRADC). Berdasarkan penelitian terdapat 18 risiko dengan klasifikasi tingkat risiko: 1 risiko ekstrim,7 risiko tinggi, 9 risiko sedang, dan 1 risiko rendah. Untuk pengendalian risiko dilakukan sesuai hierarki pengendalian risiko rekayasa teknik, pengendalian administrasi, dan penggunaan alat pelindung diri (APD).

Kata Kunci: Potensi bahaya, Risiko, Pemeriksaan harian sarana LRT Sumsel, Keselamatan kerja, HIRADC

PENDAHULUAN

Dibangunnya LRT Sumsel atas dasar Perpres Nomor 55 Tahun 2016 Tentang Percepatan Penyelenggaraan Kereta Api Ringan/ *Light Rail Transit* di Provinsi Sumatera Selatan

-

¹ Corresponding author: handoko@ppi.ac.id

bertujuan untuk meningkatkan pelayanan publik serta mendukung pembangunan di Provinsi Sumatera Selatan. Untuk menjaga keandalan dari sarana LRT maka diperlukan pemeriksaan harian dan perawatan terjadwal terhadap sarana LRT yang dilaksanakan di Depo LRT Sumatera Selatan. LRT Sumatera Selatan mengalami peningkatan jumlah perjalanan sehingga kondisi sarana harus terus dalam keadaan laik operasi sehingga pemeriksaan harian menjadi hal yang wajib dilaksanakan dalam persiapan sarana LRT yang akan beroperasi. Diketahui pada pekerjaan pemeriksaan harian sarana LRT Sumatera Selatan terdapat alat pemberi tegangan bernama *stinger system* memiliki tegangan 750 VDC yang berpotensi menyebabkan petugas tersengat listrik. potensi bahaya terpeleset dan terjatuh dari *walkway* lantai 2 pada *track* 7 dan 8 saat hendak melakukan pemeriksaan komponen AC, serta risiko iritasi pada mata akibat pemeriksaan pada rangka bawah yang terdapat pasir serta debu petugas tidak menggunakan masker dan kacamata *safety*. Berdasarkan kegiatan observasi dan wawancara penulis, di Depo LRT Sumatera Selatan pernah terjadi kecelakaan kerja pada saat kegiatan pemeriksaan harian sarana LRT Beberapa kasus kecelakaan kerja yang pernah terjadi dalam rentang waktu tahun 2020 hingga 2022.

METODE PENELITIAN

Metode pengumpulan data

Data yang digunakan adalah data primer dan data sekunder. Data primer pada penelitian ini adalah data potensi bahaya dan risiko dengan melakukan observasi dan dokumentasi serta penilaian tingkat risiko dengan melakukan wawancara. Sedangkan data sekunder adalah data standar operasional prosedur (SOP) dan *checksheet* pemeriksaan harian sarana LRT sumsel.

Metode Pengolahan data

Pada penelitian ini metode pengolahan data yang digunakan adalah menggunakan penilaian dimana menghitung nilai tingkat kemungkinan (*likelihood*) dan nilai tingkat akibat/ keparahan (*severity*) berdasarkan standar ISO 31000:2018. pengolahan data ini menggunakan bantuan program *software Microsoft Excel*. Nilai tingkat kemungkinan (*likelihood*) dan nilai tingkat akibat/ keparahan (*severity*) dikalikan untuk menentukan tingkat kategori risiko sesuai dengan hasil yang sudah didapatkan. Selanjutnya dari pengolahan data tersebut di buat peta risiko sesuai dengan selera risiko yang ditentukan perusahaan untuk menentukan risiko mana yang perlu dikendalikan maupun diabaikan menggunakan metode *hazard identification*, *risk assessment*, *and determining* control (HIRADC).

1. Identifikasi risiko

Tahap ini dilakukan dengan observasi dan wawancara untuk mengenali bahaya dan risiko pada pekerjaan pemeriksaan harian sarana LRT. Berikut ini form observasi penelitian saat melakukan identifikasi risiko:

Tabel 1. Form Observasi Penelitian

No	Komponen	Kegiatan	Potensi	Sumber	Risiko
	_		Bahaya	Bahaya	
1	CCD (Current Collector Device)				_
2	Sistem propulsi				
	(bagian rangka bawah)				
3	Sistem kelistrikan dan peralatan				
	kereta				
4	Pengkondisian udara dan pintu				
5	Sistem baterai				
6	Fasilitas penumpang				
7	Fasilitas keselamatan				
8	Bogie				
9	Pengereman dan suplai udara				
10	Coupler				

2. Penilaian risiko

Penilaian risiko dilaksanakan melalui wawancara terstruktur kepada sampel penelitian yang telah ditentukan berdasarkan kriteria tertentu. Langkah awal dilaksanakan yaitu dengan menentukan nilai tingkat kemungkinan dan tingkat akibat/ keparahan dari potensi bahaya yang ada. Nilai tingkat kemungkinan (*likelihood*) dan akibat/ keparahan (*severity*) menggunakan standar ISO 31000:2018. tahapan berikutnya dengan mengalikan nilai tingkat kemungkinan dan keparahan untuk mendapatkan nilai tingkat risiko.

Tabel 2. Tabel Skala Kemungkinan (likelihood)

Tingkat	Kriteria	Penjelasan
1	Sangat	Sangat jarang terjadi dan kemungkinannya sangat kecil, bisa kurang dari 1 kali
	Jarang	dalam 10 tahun
2	Jarang	Jarang terjadi dan kemungkinannya bisa terjadi 1 kali dalam 10 tahun
3	Mungkin	Dapat terjadi, tetapi terkadang kemungkinan 1 kali per 5 Tahun
4	Kemungkin- an Besar	Sering terjadi, kemungkinan terjadinya kecelakaan. Lebih dari 1 kali pertahun
5	Hampir	Besar kemungkinan terjadinya kecelakaan saat melakukan pekerjaan. Lebih
	Pasti	dari 1 kali perbulan

Sumber: ISO 31000, 2018

Tabel 3. Tabel Skala Akibat/ Keparahan (Severity)

Tingkat	Kriteria	Penjelasan
1	Tidak Signifikan	Dampaknya tidak signifikan terhadap tenaga kerja, tidak kehilangan waktu kerja, tidak mengganggu pekerjaan.
2	Kecil	Dampaknya kecil atau ringan terhadap tenaga kerja (cidera ringan dan masih dapat bekerja).
3	Sedang	Dampaknya sedang terhadap tenaga kerja (cidera dan tidak dapat bekerja), sedikit menghambat proses pekerjaan.
4	Besar	Dampaknya besar terhadap tenaga kerja (cacat tubuh), menghambat proses pekerjaan.
5	Katastrope	Menimbulkan korban jiwa ≥ 1 orang, atau 1 orang cacat tetap, menghentikan proses pekerjaan secara total.

Sumber: ISO 31000, 2018

$$TR = LP \times SV \tag{1}$$

Keterangan:

TR = Tingkat Risiko

LP = Nilai kemungkinan (*likelihood*) SV= Nilai akibat/ keparahan (*severity*)

Selanjutnya nilai kemungkinan (likelihood) dan nilai keparahan (severity) dari jumlah sampel akan digabungkan untuk dirata-ratakan sehingga ditemukan nilai terhadap suatu risiko. Persamaannya sebagai berikut:

Rata – rata kemungkinan =
$$\frac{\sum_{1}^{n} Kemungkinan}{Jumlah sampel (n)}$$
 (2)

$$Rata - rata \text{ keparahan} = \frac{\sum_{1}^{n} Keparahan}{Jumlah \text{ sampel } (n)}$$
(3)

Rata - rata tingkat risiko =
$$\frac{\sum_{1}^{n} Kemungkinan \times Keparahan}{Jumlah sampel (n)}$$
 (4)

Keparahan Kemungkinan 3 5 4 2 5 20 10 4 12 3 15 12 6 2 10 8 6 4

Tabel 4. Matriks Tingkat Risiko

Tabel 5. Tabel Tingkat Risiko

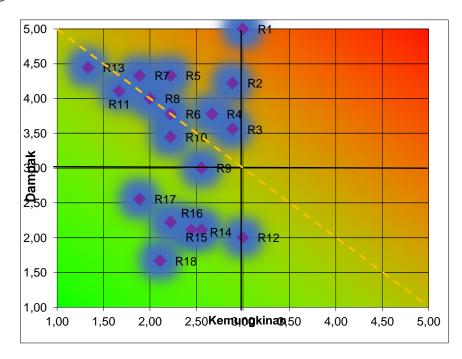
4

Tingkat risiko	Nilai	Tindakan
Ekstrim	15 – 25	Segera dilakukan pengelolaan mitigasi secara aktif, cepat, dan efektif
Tinggi	8 – 14	Dilakukan pengelolaan tepat serta cepat dan diperlukan tanggung jawab manajemen ditentukan
Sedang	4 - 7	Dikendalikan dengan monitoring yang spesifik atau membuat prosedur
Rendah	1 - 3	Tidak diperlukan kontrol tambahan, pengelolaan dengan prosedur rutin

Sumber: ISO 31000, 2018

3. Pengendalian risiko

Berdasarkan hierarki pengendalian yang dilakukan pada pekerjaan pemeriksaan harian sarana LRT Sumsel dari selera risiko perusahaan mempertimbangkan dari tingkat risiko dan sumber daya yang dimiliki sehingga jenis pengendaliannya melalui rekayasa teknik, pengendalian administrasi, dan penggunaan alat pelindung diri (APD).


HASIL DAN PEMBAHASAN

Identifikasi risiko

Dari identifikasi bahaya dan risiko didapatkan sebanyak 18 potensi risiko dari 10 komponen *checksheet* pekerjaan pemeriksaan harian sarana LRT Sumatera Selatan diantaranya 2 kegiatan berpotensi bahaya dan risiko dari pemeriksaan komponen CCD (*Current Collector Device*), 3 kegiatan berpotensi bahaya dan risiko dari pemeriksaan komponen sistem propulsi, 1 kegiatan berpotensi bahaya dan risiko dari pemeriksaan sistem kelistrikan dan peralatan kereta, 2 kegiatan berpotensi bahaya dan risiko dari pemeriksaan pengkondisian udara dan pintu, 1 kegiatan berpotensi bahaya dan risiko dari pemeriksaan sistem *battery*, 4 kegiatan berpotensi bahaya dan risiko dari pemeriksaan komponen bogie, 3 kegiatan berpotensi bahaya dan risiko dari pemeriksaan komponen alat perangkai/ *coupler*.

Penilaian risiko

Penentuan tingkat risikonya menggunakan teknik rata-rata yang bersumber dari nilai yang telah diberikan oleh narasumber penelitian. Berdasarkan hasil dari penilaian risiko diketahui bahwa dalam pekerjaan pemeriksaan harian sarana LRT terdapat tingkatan risiko yang dikategorikan menjadi 1 tingkat risiko ekstrim, 7 tingka risiko tinggi, 9 tingkat risiko sedang, dan 1 tingkat risiko rendah.

Gambar. 1 Peta Risiko

Berdasarkan gambar peta risiko di atas diketahui terdapat 18 risiko yang akan dihadapi maupun diabaikan oleh perusahaan dengan menentukan selera risiko yang dilambangkan dengan garis putus-putus. selera risiko mempertimbangkan tingkat risiko dan sumber daya yang dimiliki. Kepala Depo memberi tanggapan bahwa kegiatan pemeriksaan harian yang

menghasilkan risiko rendah dan sedang akan diterima untuk mencapai level rendah dapat dilakukan *review* dan evaluasi efektif pengelolaan risiko, dan tindakan mitigasi yang efektif. Sedangkan untuk kegiatan pemeriksaan harian sarana LRT yang menghasilkan tingkat risiko tinggi dan ekstrem akan diperlakukan pengendalian risiko untuk mencegah terjadinya kecelakaan kerja (mitigasi) dan pengelolaan risiko secara efektif, cepat dan aktif.

Pengendalian risiko

Setelah dilakukan penilaian risiko dan diperoleh peringkat risiko dari setiap pekerjaan pemeriksaan harian sarana LRT Sumatera Selatan, yang mana terdapat level risiko ekstrem, risiko tinggi, risiko sedang, dan risiko rendah. Tindakan pengendalian risiko dimulai dengan rekayasa teknik seperti pemasangan LOTOTO pada alat *stinger system* pada kegiatan *inject* tegangan 750 VDC pada saat pengecekan fungsi CCD, penggunaan *rope & body harness* pada pemeriksaan AC pada lantai 2 *walkway*, pemenuhan peralatan pembasuh mata/ *eyewash*, serta membersihkan kolong *track* pemeriksaan harian setelah pelaksanaan pekerjaan pemeriksaan harian. Untuk pengendalian risiko dengan pengendalian administrasi yaitu pelaksanaan apel *safety briefing* secara rutin sebelum bekerja, ketersediaan *safety sign* khusus pekerjaan pemeriksaan harian, memastikan peralatan kerja laik dan siap digunakan, dan pengawasan terhadap proses kerja. Sedangkan pengendalian terakhir dengan penggunaan APD lengkap (*safety helmet, safety shoes, safety vest* dan *electrical gloves 20KV*).

Tabel identifikasi risiko, penilaian risiko, dan pengendalian risiko sebagai upaya dalam mengurangi dan mengendalikan dampak risiko pada pekerjaan pemeriksaan harian sarana LRT Sumatera Selatan sebagai berikut.

Table 6. Tabel Identifikasi Bahaya, Penilaian Risiko, dan Pengendalian Risiko

					nilaian Resiko	,	an i engendana		
No	Komponen	Potensi Bahaya	Pernyataan Resiko	Kemung- kinan	Keparahan	Nilai LV x SV	Pengendalian Resiko	Jadwal	Dokumentasi
A.	Current Colle	ctor Device (CCD)							
1	Pemeriksaan fungsi CCD pada sarana	Pekerjaan inject tegangan 750 VDC pada saat pengecekan fungsi CCD pada sarana	Tersengat listrik dari alat stinger system saat inject ke sarana LRT Sumatera Selatan	3	5	15	Rekayasa Teknik, Administrasi, dan APD	Setiap hari kerja	
2	Pemeriksaan ketebalan contact strip CCS (current collector shoes)	Petugas tidak menggunakan APD Lengkap seperti sarung tangan elektrik/ electrical safety gloves	Terluka akibat tergesek saat pemeriksaan ketebalan CCS (current collector shoes)	3	2	6	Administrasi, dan APD	Setiap hari kerja	
B.	Sistem Propu	lsi (Bagian Rangka l	Bawah)						
1	Pekerjaan pemeriksaan bagian dari komponen sistem propulsi yang berada pada rangka bawah di	Kolong track 7 dan 8 pemeriksaan harian tergenang air	Terjatuh, terpeleset, terjepit, dan terbentur di kolong track 7 dan 8 pemeriksaan harian	2,56	3	7,68	Rekayasa Teknik, Administrasi, dan APD	Setiap hari kerja	

Ramadhani, et al.

No			D .	Penilaian Resiko					
	Komponen	Potensi Bahaya	Pernyataan Resiko	Kemung- kinan	Keparahan	Nilai LV x SV	Pengendalian Resiko	Jadwal	Dokumentasi
	kolong <i>track</i> 7 dan 8								
2	Pemeriksaan baut pengikat box pada komponen sistem propulsi yaitu: Battery Charger, Extended Box, HV Box, SIV Box	Petugas tidak kencang dalam mengencangkan baut pengikat box pada komponen sistem propulsi	Komponen jatuh sehingga komponen rusak dan menimpa petugas pelaksana pemeriksaan harian	1,67	4,11	6,86	Administrasi, dan APD	Setiap hari kerja	
3	Pemeriksaan pada rangka bawah sistem propulsi	Petugas tidak menggunakan masker pelindung dan kacamata safety	Terkena debu dan pasir dari rangka bawah pada saat pemeriksaan sistem propulsi sarana LRT Sumatera Selatan	2,44	2,11	5,14	Rekayasa Teknik, Administrasi, dan APD	Setiap hari kerja	
C.		ikan dan peralatan l							
	Pemeriksaan pada bagian kelistrikan kereta yakni grounding underframe	Pemeriksaan pada bagian kelistrikan kereta yakni grounding underframe	Terdapat kesalahan dalam tahapan pemeriksaan peralatan kelistrikan, Petugas tidak menggunkan APD lengkap (electrical gloves)	1,89	4,33	8,18	Administrasi, dan APD	Setiap hari kerja	
D.	Pengkondisia	n udara dan pintu	gioves						
1	Pemeriksaan fungsi komponen AC lantai 2 walkway di	Naik turun walkway lantai 2	Terjatuh dari ketinggian dan terpeleset di area walkway	2,89	4,22	12,19	Rekayasa Teknik, Administrasi, dan APD	Setiap hari kerja	
	track 7 dan 8 di Depo LRT Sumatera Selatan setinggi 3 meter		lantai 2 pada track 7 dan 8 di Depo LRT Sumatera Selatan						
2	Depo LRT Sumatera Selatan setinggi	Petugas tidak berkoordinasi dengan petugas yang lain	track 7 dan 8 di Depo LRT Sumatera	2,11	1,67	3,52	APD	Setiap hari kerja	
2 E.	Depo LRT Sumatera Selatan setinggi 3 meter Pemeriksaan fungsi buka tutup pintu otomatis di ruang	berkoordinasi dengan petugas yang lain	track 7 dan 8 di Depo LRT Sumatera Selatan Terjepit pintu otomatis Sarana LRT Sumatera	2,11	1,67	3,52	APD	hari	
	Depo LRT Sumatera Selatan setinggi 3 meter Pemeriksaan fungsi buka tutup pintu otomatis di ruang penumpang	berkoordinasi dengan petugas yang lain	track 7 dan 8 di Depo LRT Sumatera Selatan Terjepit pintu otomatis Sarana LRT Sumatera	2,11	3,56	3,52	APD Administrasi, dan APD	hari	

Ramadhani, et al.

				Pe	nilaian Resiko		_		
No	Komponen	Potensi Bahaya	Pernyataan Resiko	Kemung- kinan	Keparahan	Nilai LV x SV	Pengendalian Resiko	Jadwal	Dokumentasi
1	Pemeriksaan flat tidaknya komponen wheelset pada bogie sarana LRT Sumatera Selatan	Stop blok tidak dipasang/ belum dipasang oleh petugas	Terjepit wheelset bogie sarana LRT Sumatera Selatan	2,67	3,78	10,09	Administrasi, dan APD	Setiap hari kerja	
2	Pemeriksaan kekencangan baut rangka bawah komponen bogie	Petugas tidak kencang dalam mengencangkan baut pada komponen rangka bawah bogie	Komponen jatuh sehingga komponen rusak dan menimpa petugas pelaksana pemeriksaan harian	2,22	3,44	7,63	Administrasi, dan APD	Setiap hari kerja	
3	Pemerikaan suhu bearing pada bogie sarana LRT Sumatera Selatan	Peralatan pemeriksaan suhu (thermometer infrared) tidak berfungsi dengan baik	Terluka akibat menyentuh bearing pada komponen bogie yang memiliki suhu tinggi	1,89	2,56	4,83	Administrasi, dan APD	Setiap hari kerja	
4	Pemeriksaan komponen bogie pada sarana LRT Sumatera Selatan	Petugas tidak menggunakan masker pelindung dan kacamata safety	Terkena debu dan pasir dari rangka bawah saat pemeriksaan komponen bogie harian sarana LRT Sumatera Selatan	2,56	2,11	5,40	Administrasi, dan APD	Setiap hari kerja	
F.		dan suplai udara							
1	Pemeriksaan ketebalan rem blok sarana	Petugas tidak berkoordinasi dengan petugas lainnya saat melaksanakan pemeriksaan fungsi sistem pengereman	Terjepit saat melakukan aktifitas kerja, berpotensi cacat ketika terjadi kecelakan kerja karena sistem pengereman kereta tidak bisa dilepas secara spontan	2,22	3,78	8,39	Administrasi, dan APD	Setiap hari kerja	
2	Pemeriksaan fungsi service brake, parking brake, dan emergency brake sarana LRT Sumatera Selatan	Petugas tidak berkoordinasi dengan petugas lainnya saat melaksanakan pemeriksaan fungsi sistem pengereman	pemeriksaan fungsi sistem pengereman yang memiliki potensi cacat ketika terjadi kecelakan kerja karena sistem pengereman	2	4	8	Administrasi, dan APD	Setiap hari kerja	

			Penilaian Resiko						
No	Komponen	Potensi Bahaya	Pernyataan Resiko	Kemung- kinan	Keparahan	Nilai LV x SV	Pengendalian Resiko	Jadwal	Dokumentasi
			kereta tidak bisa dilepas secara spontan						
3	Pemeriksaan visual sistem pengereman	Petugas tidak menggunakan masker pelindung dan kacamata safety	Terkena debu dan pasir dari rangka bawah saat pemeriksaan harian sarana LRT Sumatera Selatan	2,22	2,22	4,92	Administrasi, dan APD	Setiap hari kerja	
J .	Alat Perangk	ai (Coupler)							
1	Pemeriksaan bagian coupler seperti: bar coupler, automatic tight lock coupler, clou coupler	Tidak adanya koordinasi antara petugas langsir dengan petugas pelaksana pemeriksaan harian	Petugas terjepit alat rangkaian (coupler),	1,33	4,44	5,90	Administrasi, dan APD	Setiap hari kerja	
2	Pemeriksaan perangkai pneumatik pada komponen coupler	Petugas tidak memasang stop blok akibat terlupa dan/ atau kelalaian	Petugas tertabrak kereta	2,22	4,33	9,61	Administrasi, dan APD	Setiap hari kerja	

KESIMPULAN

Berdasarkan penelitian pengendalian risiko pada pekerjaan pemeriksaan harian sarana LRT Sumatera Selatan dengan metode HIRADC, maka dapat ditarik kesimpulan terdapat 18 risiko yang dapat mengancam keselamatan dan keamanan para petugas ketika melaksanakan pemeriksaan harian sarana LRT Sumsel diantaranya dengan terbagi menjadi beberapa tingkat risiko diantaranya 1 risiko tingkat ekstrem, 7 risiko tingkat tinggi, 9 risiko tingkat sedang, dan 1 risiko tingkat rendah. Pengendalian risiko pada pekerjaan pemeriksaan harian sarana LRT Sumsel dengan menggunakan metode HIRADC yang akan dilakukan berdasarkan hierarki manajemen risiko yaitu dimulai dari rekayasa teknik melalui pemasangan LOTOTO pada alat stinger system, penggunaan rope & body harness pada pemeriksaan AC di lantai 2 walway, pemenuhan alat pembash mata/ eyewash, serta membersihkan kolong *track* pemeriksaan harian setelah pelaksanaan pekerjaan. Pengendalian administrasi melalui pelaksanaan apel safety briefing secara rutin sebelum melaksanakan pekerjaan pemeriksaan harian, ketersediaan safety sign khusus pekerjaan pemeriksaan harian, memastikan peralatan kerja laik dan siap digunakan, serta pengawasan terhadap proses kerja. Adapun pengendalian terakhir dengan cara penggunaan alat pelindung diri (APD) safety helmet, safety shoes, safety vest, dan electrical gloves 20KV.

DAFTAR PUSTAKA

- Ameiliawati, R. (2022). Penerapan Keselamatan dan Kesehatan Kerja dengan Metode HIRADC (Hazard Identification, Risk Assessment and Determining) di Area Plant-Warehouse. Media Gizi Kesmas, Vol 11, No. 1, 238 245.
- Celesta, I., & Ismiati, M. B. (2022). *Matriks Evaluasi Risiko Penerapan IS/IT Menggunakan Standar ISO 31000:2018 (Studi Kasus: PT XYZ). Jurnal Telematika, XVII*, 65-74.
- Harahap, I. M., Firdasari, & Purwandito, M. (2022). Analisis Risiko Keselamatan Dan Kesehatan Kerja (K3) Melalui Metode HIRADC dan Metode JSA Pada Proyek Lanjutan Pembangunan Rumah Sakit Regional Langsa. Menara: Jurnal Teknik Sipil, vol. 17 No 2, 43 50.
- OHSAS 18001. (2008). Occupational health adn safety management systems Guidlines for the implementation of OHSAS 18001:2007.
- Peraturan Menteri Perhubungan Nomor 69. (2018). *Tentang Sistem Manajemen Keselamatan Perkeretaapian*. DKI Jakarta: Pemerintah Republik Indonesia.
- Peraturan Presiden Nomor 55. (2016). Tentang Percepatan Penyelenggaraan Kereta Api Ringan/ Light Rail Transit Sumatera Selatan. DKI Jakarta: Pemerintah Republik Indonesia.
- Praditya, R. R. (2020). Penerapan Metode Hazard Identification Risk Assesment and Determining Control (HIRADC) Di Bagian Diesel PT Kereta Api Indonesia (Persero) UPT Balai Yasa Yogyakarta. Yogyakarta: Universitas Islam Indonesia.
- Ramli, S. (2010). Pedoman Praktis Manajemen Risiko dalam Perspektif K3 OHS Risk Management. DKI Jakarta: Dian Rakyat.