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The concept of autonilpotent groups was introduced by 
Moghaddam and Parvaneh in 2010 which is related to 
concepts of absolute centre and autocommutator 
subgroups that were first proposed by Hegarty in 1994 and 
1997 respectively. In the present article we give some 
useful properties of such groups. In the first section, we 
define a subgroup GK𝑛 for a given group G, as  GK𝑛 =
〈 [g , αn] | g ∈  G, α ∈ Aut(G) 〉  which is characteristic 

subgroup of 𝐺 . In this section, based on the induction 
method, we obtain the structure of  GK𝑛   as 
〈 [ g , α ]𝑛 |g ∈  G, α ∈  Aut(G) 〉 , 

〈 [ g , α ]𝑛 [g, α, α]n(n−1)/2|g ∈  G, α ∈  Aut(G) 〉  and 

〈 (∏ [g, α][g, α, α]𝑖) [g, α, α, α]
n(n−1)(n−2)

6𝑛−1
𝑖=0 | g ∈  G, α ∈

 Aut(G) 〉 in autonilpotent groups of classes 2, 3 and 4 

respectively. In second section, 𝑛 -fixed group  is 

introduced as a group G with GK𝑛 = 1 for some n ∈ ℕ. 
Then among other results of n-fixed groups, we 
characterize some n-fixed groups. Based on the role of the 
absolute centre subgroup in the structure of the group, we 
prove a non-trivial finite group G  is isomorphic to ℤ2 iff 
G  is 1-fixed group also we show that abelian group G is 

𝑝 -fixed autonilpotent group iff it is isomorphic to G ≅  C2𝑘 

where 1 ≤  k ≤  3. 

  
 

 

INTRODUCTION 

Let G be a group and A = Aut(G) denotes its full automorphism group. For g ∈ G, α ∈  A, 

the element [g , α ] = g−1gα  is an autocommutator of G . If α  runs over to Inner 
automorphisms, then autocommutator is usual commutator. Concept of autocommutator 
and the subgroup that generated by it, as K(G) = 〈 [g , α ]|g ∈  G, α ∈  Aut(G) 〉  was 
introduced by Hegarty in 1997 (Hegarty 1997). Clearly if α is limited to inner automorphism 

then K(G) is identical to derived subgroup. K𝑛(G) is one extension of K(G) which was 
defined by Parvaneh and Moghaddam in 2010 (Parvaneh & Moghaddam 2010, Kappe et 
al. 2017) as follows: 

K𝑛(G) = [ K𝑛−1(G), Aut(G)] 
       = 〈 [g, α1, … , α𝑛]| g ∈ G, α𝑖 ∈  Aut(G), 
            i = 1, . . . , n 〉   
 
Furthermore, K(G) ≥  K2(G) ≥ . . . ≥  K𝑛(G) ≥ . ..  
 
represents lower autocentral series of K𝑛(G). 

Also Hegarty in 1994 introduced the concept of absolute centre of G, which is defined 

by L(G) ={g ∈ G; [g, α] = 1, ∀α ∈Aut(G)}. Clearly, L(G) is a characteristic subgroup and 
contained in the centre of G. This notion has been already studied in (Gholamian & 
Nasrabadi 2016, Kaboutari & Nasrabadi 2016, Alamshahi et al. 2022). Several studies 
have been conducted on the relationship between autocommutator and absolute centre 
and its effect on group classification (Haghparast et al. 2023). The concept of autonilpotent 
group is one of these mentioned effects. 
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According to K𝑛(G) series, autonilpotent group defined as follows: 

Definition 1.1 
A group G is called autonilpotent of class c if K𝑐(G) = 1, for some c ∈  ℕ. 

the smallest c with this property is said to be autonilpotency class of 𝐺. 
The concept of autonilpotent group has been discussed and studied from different 

perspectives (Nasrabadi & Gholamian 2017). 
In this article we introduce a new subgroup, say GK𝑛, and determine the structure of this 

subgroup in autonilpotent groups of class c < 5. Meanwhile introducing 𝑛-fixed groups, 

we classify some 𝑛-fixed autonilpotent groups. 

METHOD 

The results of this research, like other branches of pure sciences, are based on studying 
and following the works and studies of other researchers in this field. In fact, articles, books, 
thinking, pondering and focusing on unsolved issues and using reasoning based on 
knowledge is the general method of doing work. In this article, specifically, the results are 
obtained in two different parts. In the first part, GK_n subgroups are obtained for 
autonilpotent groups of class c<5, and the method of the proof is induction. An example is 
provided in each case for clarity. In the second part, n-fixed groups are classified according 
to the structure of GK_n subgroups. The results obtained in this section are based on the 
reasoning of the group structure and the previous findings of researchers in this field. 

RESULTS AND DISCUSSION 

In this part, we present the structure of the subgroup GK𝑛 for the autonilpotent groups of 

class c < 5 in the form of theorems, and in each case, we present the corresponding 
example. 

First we introduce new subgroup as follows: 

GK𝑛 = 〈 [g , αn] | g ∈  G, α ∈ Aut(G) 〉 

It is easily seen that GK𝑛 is characteristic subgroup of the group G. Following theorems 

determine the structure of GK𝑛 in autonilpotent groups of class c < 5.  It is clear that in 
every autonilpotent group of class 1, GK𝑛 is trivial subgroup. 

 
Theorem 3.1 

Let G be an autonilpotent group of class 2. Then 

GK𝑛 = 〈 [ g , α ]𝑛 |g ∈  G, α ∈  Aut(G) 〉. 

Proof: 
We prove the theorem by induction on  𝑛. If 𝑛 = 1, the theorem is true. Assume that the 
statement holds for n = k. Then we consider n = k + 1 to perform the last inductive step. 
By definition we have 

 GK𝑘+1 = 〈 [ g , α𝑘+1]|g ∈  G, α ∈  Aut(G)〉. 

But  

[g, α𝑘+1] = g−1α𝑘+1(g) = 

= g−1α𝑘(gg−1α (g)) = 

= g−1α𝑘(g)α𝑘[g, α] = 

= [g, α𝑘][g, α][g, α]−1α𝑘[g, α] = 

= [g, α𝑘] [g, α] [g, α, α𝑘]. 

Since G is autonilpotent of class 2, we have 

 [g, α, α𝑘] = 1 and by induction hypothesis [g, α𝑘] = [g, α]𝑘. Then  

[g, α𝑘+1] =  [g, α]𝑘[g, α] = [g, α]k+1. 

So the proof is completed. 
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Example 3.2 

Table 1. Autonilpotent Group of Class 2  

ℤ4 〈𝑎|𝑎4 = 1〉 

𝐴𝑢𝑡(ℤ4) 
𝐼: 𝑎 → 𝑎 

𝛼: 𝑎 → 𝑎3 

GK𝑛 
{

1   , 𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

〈𝑎2〉, 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑
 

 

Theorem 3.3 

Let G be an autonilpotent group of class 3. Then 

GK𝑛 = 〈 [ g , α ]𝑛 [g, α, α]n(n−1)/2|g ∈  G, α ∈  Aut(G) 〉. 

Proof: 
We prove the theorem by induction on n. If n = 1, the theorem is true. Assume that the 

statement holds for  n = k. Then we consider n = k + 1 to perform the last inductive step. 

We have  

[g, α𝑘+1] = [g, α]α[g, α𝑘]. 

But induction hypothesis implies that 

[g, α𝑘+1] = 

= [g, α]α ([g, α]𝑘[g, α, α]
k(k−1)

2 ) = 

= [g, α](α[g, α])𝑘 (α[g, α, α]
k(k−1)

2 ).   (𝑖)    

Since G is autonilpotent of class three, we have  

α[g, α] = [g, α] [g, α, α] 

when [g, α, α] is commutative. Hence 

(α[g, α])𝑘 = [g, α]𝑘[g, α, α]𝑘       (𝑖𝑖) 

Moreover by autonilpotency of class 3  

α [g, α, α] = [g, α, α][g, α, α, α] = [g, α, α] 

Therefore 

(α[g, α, α])
k(k−1)

2 = [g, α, α]
k(k−1)

2         (𝑖𝑖𝑖) 

(𝑖),  (𝑖𝑖) and (𝑖𝑖𝑖) result in  

[g, α𝑘+1] = 

= [g, α][g, α]𝑘[g, α, α]𝑘[g, α, α]
k(k−1)

2 = 

= [g, α]𝑘+1[g, α, α]
k(k+1)

2  

And the proof is completed. 
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Example 3.4 

Table 2. Autonilpotent Group of Class 3  

ℤ8 〈𝑎|𝑎8 = 1〉 

 

𝐴𝑢𝑡(ℤ8) 

𝐼: 𝑎 → 𝑎 

𝛼2: 𝑎 → 𝑎3 

𝛼3: 𝑎 → 𝑎5 

𝛼4: 𝑎 → 𝑎7 

GK𝑛 
{

1   , 𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

〈𝑎2〉, 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑
 

Theorem 3.5 

Let G be an autonilpotent group of class 4. Then 

 

GK𝑛 = 〈 (∏ [g, α][g, α, α]𝑖) [g, α, α, α]
n(n−1)(n−2)

6𝑛−1
𝑖=0 | g ∈  G, α ∈  Aut(G) 〉. 

Proof: 
We prove the theorem by induction on n. If n = 1, the theorem is true. Assume that the 

statement holds for n = k. Then we consider n = k + 1 to perform the last inductive step. 

We have  

[g, α𝑘+1] = 

 [g, α]α(∏ [g, α][g, α, α]𝑖) [g, α, α, α]
k(k−1)(k−2)

6𝑘−1
𝑖=0 = 

= (∏[g, α][g, α, α]𝑖) [g, α, α, α]
k(k−1)(k−2)

6

𝑘

𝑖=0

 

 [g, α, α, α]
k(k−1)(k−2)

6
+∑ 𝑖𝑘−1

𝑖=0  

= (∏[g, α][g, α, α]𝑖) [g, α, α, α]
k(k−1)(k−2)

6
+

k(k−1)
2

𝑘

𝑖=0

  

= ( ∏ [g, α][g, α, α]𝑖) [g, α, α, α]
k(k+1)(k−1)

6

(𝑘+1)−1

𝑖=0

 

Thus the proof is completed. 

Example 3.6 

Table 3. Autonilpotent Group of Class 4  

ℤ16 〈𝑎|𝑎16 = 1〉 

 

 

 

𝐴𝑢𝑡(ℤ16) 

𝐼: 𝑎 → 𝑎 

𝛼2: 𝑎 → 𝑎3 

𝛼3: 𝑎 → 𝑎5 

𝛼4: 𝑎 → 𝑎7 

𝛼5: 𝑎 → 𝑎9 

𝛼6: 𝑎 → 𝑎11 

𝛼7: 𝑎 → 𝑎13 

𝛼8: 𝑎 → 𝑎15 

GK𝑛 

{

1,                      𝑛 = 0(𝑚𝑜𝑑4)

〈𝑎2〉, 𝑛 = 1𝑜𝑟 3(𝑚𝑜𝑑4) 

〈𝑎8〉,                 𝑛 = 2(𝑚𝑜𝑑4)
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Relation between autonilpotent and 𝒏-fixed groups 

In this section first 𝑛-fixed groups are introduced. Then the structure of  some 𝑛-fixed 
autonilpotent groups is determined. 

Definition 3.7 

A group G is called 𝑛-fixed if GK𝑛 = 1. Similarly to autonilpotency class, a class for 𝑛-
fixed group is the smallest number, 𝑛, of feature GK𝑛 = 1. 
Theorem 3.8 

If G be a finite group with elementary abelian automorphism group of exponent 𝑝,then 

G is 𝑝 –fixed group. 

Proof: 
The result is simply obtained by definition of 𝑛-fixed group. 

Example 3.9 

One can construct a non-abelian group G of order 64 such that Aut(G) is an elementary 
abelian group of order 128 which is the smallest 𝑝-fixed  𝑝-group (Bolinches et al. 2023). 

D. Jonah and M. Konvisser constructed 4-generated groups of order 𝑝8  such that 

Aut(G) is an elementary abelian group of order 𝑝16, where 𝑝 is any prime which is the 𝑝-
fixed  𝑝-group(Jonah & Konvisser 1975). 

Also more non-abelian n-fixed group examples were studied by other researchers. 
(Munia et al. 2022, Hosseini et al. 2025, Ghoraishi 2019). 

Lemma 3.10 ((Hosseini et al. 2015), Lemma 2.9.) 

If G is an autonilpotent group, then every Sylow 𝑝-subgroup of  G is also autonilpotent. 

Lemma 3.11 ((Hosseini et al. 2015), Lemma 2.2.) 

If G is a finite 𝑝-group of autonilpotency class 𝑐, then  Aut(G) is also a 𝑝-group. 

Lemma 3.12 

Let G be 𝑛-fixed group such that G = H ×  K with H, K ≤  G and  ( |H|, |K|) = 1. Then H 

and K are 𝑛-fixed. 

Proof: 
Without loss of generality we may assume that 
HK𝑛 ≠ 1. So there exist  h ∈  H and  α𝐻 ∈  Aut(H) such that [h, α𝐻

𝑛 ] ≠  1. Thus for g =
(h, e) ∈  H ×  K = G and α = α𝐻 ×  I𝐾 ∈  Aut(H) ×  Aut(K) ≅  Aut(G), we have [g, α𝑛] ≠ 1  
which is in contradiction to GK𝑛 = 1 and the proof is completed. 

Following theorems classify some 𝑛-fixed autonilpotent groups. 

Theorem 3.13 

G is an abelian, 𝑝-fixed autonilpotent group (prime 𝑝) if and only if  G ≅  C2𝑘 where 1 ≤

 k ≤  3. 

Proof: 
Clearly, if the group G is considered to be C2𝑘 where 1 ≤  k ≤  3 the result is obvious. 

Conversely,  we can write  

G ≅  S1 ×  S2 × … ×  S𝑡   

where S𝑖  is an abelian Sylow p𝑖 -subgroup of G ( 1 ≤  i ≤  t ). Moreover S𝑖   is 

autonilpotent and 𝑝-fixed by Lemma 3.8 and Lemma 3.10 respectively. Therefore without 

loss of generality we focus on the study of S𝑗 as arbitrary Sylow subgroup of G .Clearly 

S𝑗  is an abelian 𝑝 -fixed autonilpotent 𝑝𝑗 -group. Since S𝑗  is 𝑝 -fixed group, we have 

[g, α𝑝] = 1 for all. g ∈  S𝑗 and α ∈  Aut(S𝑗).  Thus Aut(S𝑗) is elementary abelian 𝑝 -group. 

Hence S𝑗 is cyclic and 𝑝 -group. So, it is easily concluded that 𝑝 =2   and  G ≅  C2𝑘 

where 1 ≤  k ≤  3. 

Theorem 3.14 

Let G be a non-abelian, autonilpotent group. Then G is 𝑝 -fixed (prime 𝑝) if and only if  

G is 𝑝-group (prime 𝑝) with 𝑝-automorphism group of exponent 𝑝. 

Proof: 
Clearly, if the group G is considered to be 𝑝-group (prime 𝑝) with 𝑝-automorphism group 
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of exponent 𝑝, the result is obvious. Conversely,  assume the contrary and there exists a 

prime 𝑞(𝑞 ≠ 𝑝) such that 𝑞||𝐺|. Hence according to the structure of  G and  Aut(G)  

which was discussed in detail in the proof of the previous theorem, G must be 𝑛-fixed where 

𝑛 = 𝑝𝑞 which contradicts that the group G is being a 𝑝–fixed group. Moreover since G is 

autonilpotent, the automorphism of  G is also 𝑝-group by Lemma 3.11 and because G  is 
𝑝–fixed, the exponent of Aut(G) equals 𝑝 and the proof is completed. 

The following technical theorem is needed in proving one of our main results. 

Theorem 3.15 

If G  is a finite abelian group, then the absolute centre of G  is either trivial or  
ℤ2, the cyclic group of order 2. 

Proof: 
Clearly, in an abelian group G, the map θ: G → G given by θ(x) = x−1for all x ∈ G  is an 

automorphism. By the definition every element g ∈ L(G) is fixed by all the automorphisms 

of G and so g = θ(g) = g−1 . Hence all non-trivial elements 𝑔 in L(G) are of orders 2. 
Therefore the absolute centre of G is an abelian 2-group. Hence if G is abelian of odd 

order it has no involutions, which implies that L(G) must be trivial. So we assume that G 

is an abelian group of even order and determine the structure of L(G). 

Thus we may consider G = H ×  K, where H is a 2-group and K is a subgroup of odd order. 

If exp(H) = 2𝑛, then H contains an element x, 

 say of order 2𝑛  and we may write H = 〈 x 〉 × A , where A  is a subgroup of H  of 

exponent less than or equal to 2𝑛. Now, every element g in G of order 2 must be of the 
following form: 

g = x2𝑛−1
a, a  or x2𝑛−1

, for some a ∈  A.   

Now, we show that the elements in L(G) are only of the form x2𝑛−1
.  If g = x2𝑛−1

a or 

g=a, then G has an automorphism α , which sends a to x2𝑛−1
a. Therefore α moves both 

elements a and  x2𝑛−1
a, and so they can not be in L(G)  and so g must be the form x2𝑛−1

. 
Now, to complete the proof we consider two cases for exp(A). 

Case 1: exp(A) = 2𝑛 

In this case there exists an element y ∈ A such that |y| = 2𝑛 . As above, we may define 

an automorphism 𝛽 such that 𝛽(𝑥) = 𝑥𝑦. Hence 𝛽(𝑔) = 𝑔y2𝑛−1
 and so ∉ L(G) . Thus in 

this case, the absolute centre is trivial. 

Case 2: exp(A) < 2𝑛 

Assume that 𝛼  is an arbitrary automorphism, then 𝛼(𝑥) = x2𝑘−1𝑦 , where y ∈  A  and 

|y| < |x|. Hence 𝛼(𝑔) = 𝛼(x2𝑛−1
) = (𝑥2𝑘−1𝑦)2𝑛−1

= 𝑔 ,which shows that 𝑔 ∈ L(G)  . Since 

g is of order 2, it implies that L(G) ≅ ℤ2. 

Theorem 3.16 

Let G be a non-trivial finite group, then G ≅ ℤ2 if and only if  G  is 1-fixed. 

Proof: 
It is clear that ℤ2 is 1-fixed. Conversely, assume that G is 1-fixed group. So we consider 
two cases. 

Case 1: G is abelian 
The autocommutator subgroup of  G is trivial. therefore 𝐺 = L(G). By Theorem 3.13 G ≅
ℤ2. 

Case 1: G is non-abelian 

It is clear that automorphism group of 𝐺  has non-identity element, say, 𝛼. Abviously, 
there exists 𝑥𝜖𝐺  such that [𝑥, 𝛼] ≠ 1. Therefore 𝐺 cannot be 1-fixed group. 

CONCLUSION 

Group theory is an interesting area of research. One of the most important goals of 
researchers is to find the structure of finite groups because it makes the study of groups 
easier. This work relates the finite autonilpotent group structures. In this paper, the 

characteristic subgroup, 〖 GK 〗 _n, is introduced and while determining the exact 
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structure of this subgroup in autonilpotent groups of class c<5,  it has been used as a tool 
in defining n-fixed groups. Also finite autonilpotent groups are classified when their above 
mentioned characteristic subgroup is the trivial subgroup. 
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