

JOURNAL OF BIOBASED CHEMICALS

Volume 1, Issue 1, 2020, pp. 1 − 14

Journal homepage: http://journal.unej.ac.id/JOBC

Microwave Assisted Extraction of Essential Oil from Fresh Basil (Ocium Basilicium L.) Leaves

Ditta Kharisma Yolanda Putri* and Atiqa Rahmawati

Department of Chemical Engineering, Universitas Jember, Indonesia 68121

(Submitted: 29 July 2019; Revised: 20 February 2020; Accepted: 4 June 2020)

Abstract. In this research, the extraction of essential oil from fresh basil leaves is conducted using solvent-free microwave extraction (SFME) and microwave hydrodistillation (MHD) methods. Several parameters influence the extraction of basil oil using the SFME method: microwave power, the ratio of the mass of raw material to the volume of the distiller (F/D), material size, and the length of the extraction time. Additionally, the components contained in basil oil and changes in oil gland conditions in basil leaves before and after extraction were also evaluated. The optimum condition was obtained as follows: microwave power of 380 W, a ratio of 0.1 g/mL between the mass of raw material and the volume of the distiller (F/D), raw material size of intact (± 3 cm), and an extraction time of 60 min. Moreover, SFME has a shorter extraction time to produce yields than MHD methods. GC-MS analysis of basil oil identified 49 components. This study demonstrates that the SFME method is more effective than the MHD method for extracting basil oil from fresh leaves, based on both the time of extraction and yield.

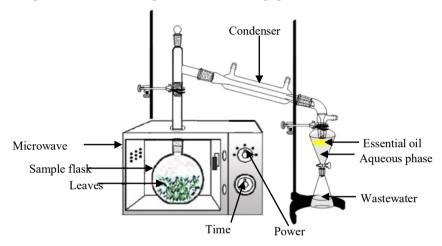
Keywords: basil oil, essential oil, microwave hydrodistillation, Ocimum basilicum L., solvent-free microwave extraction

1. Introduction

Essential oil is one of the potential agroindustry export commodities, serving as a mainstay for Indonesia's foreign exchange. The data on essential oil consumption and its derivation from the World Export-Import Statistics indicate an average annual growth of 5-10%. The increase was primarily driven by the growing demand for cosmetics, food flavorings, and fragrances. Essential oils that are mostly distilled in Indonesia include patchouli oil, cloves, nutmeg, citronella, fragrant root, eucalyptus oil, and others. Meanwhile, essential oils have the potential to be developed, including basil, gandapura, cardamom, cinnamon, and others [1].

^{*}Corresponding author: dittakharisma21@gmail.com

Basil (Ocimum basilicum L.) is one of the essential oil-producing plants in Indonesia that has not been fully utilized. Currently, the Indonesian people are more popular for consuming basil leaves as a vegetable (Ocimum basilicum L.). As a traditional medicine, basil leaves are used to treat fever, nausea, and increase milk production in breastfeeding mothers [2]. Additionally, basil offers various health benefits, including the treatment of diseases such as headaches, cough, diarrhea, constipation, skin diseases, worm infestations, and kidney failure. As a medicinal herb, basil leaves are also efficacious in various capacities, including anti-carcinogenic, anthelmintic, antiseptic, anti-rheumatic, anti-stress, and antibacterial properties [3]. Basil leaves contain various components, including saponins, flavonoids, tannins, and essential oils [4]. While the most important content is an essential oil, the essential oils in basil leaves can inhibit the growth of Staphylococcus aureus, Escherichia coli, Bacillus cereus, Pseudomonas fluorescence, Candida albicans, Streptococcus alfa, and Bacillus subtilis [5].


In a previous study, essential oil from basil leaves was obtained from dry basil by using the Soxhlet method. Basil leaves were extracted using the Soxhlet method and ethyl acetate as a solvent. From this study, basil leaves were dried and sieved through a 40-mesh sieve. The optimal condition from this study was a 1:6 (w/v) ratio of dry basil leaves and solvent for 6 an extraction time [6]. Another method that was used is the microwave hydrodistillation (MHD) method. Based on a study conducted by Dalia et al. (2015), using 200 g of dried basil leaves and the MHD method for 6 h yielded 0.6% v/w. The MHD method yielded a small amount, and the extraction time was prolonged. It is necessary to consider using the green technique in the extraction of essential oils, which involves minimal solvent, energy, and time consumption. Nowadays, Microwave-assisted extraction is one of the new methods that have been developed for extracting essential oils. A study comparing the MHD and Solvent-Free Microwave Extraction (SFME) methods for extracting essential oils from basil leaves was conducted. From this study, dry basil leaves were extracted to obtain essential oils. According to this study, SFME has several significant advantages over MHD, including shorter extraction times, solvent savings, substantial energy savings, and environmental friendliness [8]. From the research, we can conclude that all studies using dry basil leaves to obtain essential oil have found SFME to be the optimal method for essential oil extraction.

This study aims to optimize the process of extracting the essential oil from fresh basil leaves. The selection of fresh basil leaves had not been used in previous studies and is expected to reduce costs due to the lack of a drying process required. This study will use two methods of microwave-assisted extraction. These methods are the MHD method and the SFME method. The selection of the SFME method for extracting essential oils does not require the addition of solvent, unlike other extraction methods, resulting in a higher yield and shorter extraction time [9].

2. Materials and Methods

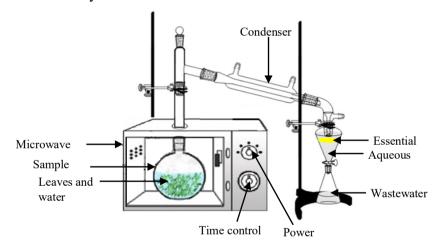
2.1 Materials

Fresh basil (*Ocimum basilicum* L.) leaves were collected from Keputran market, Surabaya, East Java, Indonesia. The size of the fresh basil leaves used in this study was intact (± 3 cm), half-intact (± 1.5 cm), and chopped (± 0.5 cm). An analytical-grade anhydrous sodium sulfate was purchased from Sigma-Aldrich, Singapore.

Figure 1. The experimental setup for the extraction of essential oil from fresh basil (*Ocimum basilicum* L.) leaves using a solvent-free microwave extraction method

In this SFME method (Figure 1), we used a microwave oven type EMM-2007X (20 L, 220 V, maximum power of 800 W) with a wave frequency of 2450 MHz. The dimensions of the PTFE-coated cavity of the microwave oven were 46.1 x 28 x 37.3 cm. The microwave oven was modified by drilling a hole at the top. A round-bottom flask with a capacity of 1000 mL was placed in the oven and connected to the Clevenger apparatus. Then, the hole was sealed with PTFE to prevent any heat loss inside.

The procedure for the SFME method was performed at 1 atm, the size variables of fresh basil leaves (chopped, intact, and half intact), and the ratio between the mass of raw material with a volume of distiller (F/D) (0.1; 0.175; and 0.25 g/mL)—the weighted material placed in a flask (1000 mL). Four power levels were operated using a microwave oven (100 W, 240 W,


380 W, and 540 W) for 60 min. Furthermore, to determine the effect of extraction time on the yield of basil oil, extractions using the SFME method were performed for up to 80 minutes. The extracted basil oil was dried over anhydrous sodium sulfate to remove water in the essential oil. Then, they were weighed and stored in vial bottles at 4 °C.

The yield of basil oil is calculated as follows:

$$Yield (\%, w/w) = \frac{Mass \ of \ extracted \ basil \ oil}{Mass \ of \ fresh \ basil \ leaves \times (1-water \ content)} \times 100\% \tag{1}$$

2.2 Microwave Hydrodistillation (MHD)

The extraction of basil oil using the MHD method (Figure 2) was done using the SFME method. 175 g intact fresh basil leaves (± 3 cm) and 400 mL of distilled water (ratio of raw material and a volume of solvent (F/S) of 0.4375 g/mL) were put into a 1000 mL distiller flask, and basil oil was extracted at a microwave power of 380 W for 180 min. Basil oil was collected in a vial, then dried over anhydrous sodium sulfate and stored at 4 °C.

Figure 2. The experimental setup for the extraction of essential oil from fresh basil (*Ocimum basilicum* L.) leaves using the microwave hydrodistillation method

2.3 Chemical Analysis of Basil Oil Components by Gas Chromatography-Mass Spectrometry (GC-MS)

The components contained in basil oil were obtained by using gas chromatography-mass spectrometry (GC-MS) analysis. This analysis is not only used to know the components contained in essential oils, but also to know the level of each component. GC-MS was used in this study using an Agilent 6980N gas chromatograph with an Agilent 5973 mass spectrometric detector. Gas chromatography-mass spectrometry was incorporated with a chromatography

column HP-5.5% phenyl methyl siloxane, 30 m length: 0.32 mm film thickness, 0.25 μm internal diameter.

2.4 Scanning Electron Microscopy (SEM)

Scanning Electron Microscopy (SEM) analysis is a technique used to examine the surface structure of materials. The morphology of the fresh basil leaves was studied using SEM Evo MA 19. In this case, the material analyzed was the basil leaves before and after extraction.

3. Results and Discussions

3.1 Effect of Microwave Power on the Yield of Basil Oil: Comparison of Performance of Basil Extraction using SFME and MHD

The time of extraction is the main factor that affects the performance of MHD and SFME. In the extraction process, there are three important stages: the equilibrium phase, the transition phase, and the diffusion phase. The equilibrium phase occurs when the substrate is transferred to the outer layer of the matrix. Then, it is followed by the transition phase in which convection and diffusion occur in mass transfer. The last phase is diffusion. In the diffusion phase, the release of extracts through a diffusion mechanism is characterized, and in this phase, the extraction rate is slow. In the extraction process, mostly the extraction time is proportional to the yield. The longer the extraction time, the higher the yield will be [10].

In extracting basil oil using the MHD method and SFME method, the time of extraction is one of the factors that need to be considered. Table 1 shows the correlation between extraction time and basil oil yield. The MHD method requires more time to reach the equilibrium phase than the SFME method, which is 80 min. Whereas in the SFME method, within 80 min, the diffusion phase has reached. In general, the extraction of basil oil using the SFME method required a faster time (60 min) that could produce higher yields, which is 3.41 times greater than the MHD method. In SFME, extraction occurs in two kinds of heating: selective and volumetric. Selective heating is microwave radiation that can directly penetrate the distillation flask so that materials and solvents can absorb radiation effectively. Whereas volumetric heating is heating that occurs in the overall volume of material, so that heat is uniform and occurs more quickly. This method allows for obtaining high yield at lower extraction time when the extraction was done by SFME [11]. This statement proves that the SFME method is quite effective and efficient when compared to the MHD method.

SFME 0 1,662	MAHD 0
•	•
1 662	0.010
1.002	0.249
2.120	0.268
2.281	0.388
2.373	0.400
	0.503
	0.573
	0.603
	0.666
	0.668
	2.281

Table 1. Comparison of the effect of time on yield between SFME and MAHD

3.2 Effect of operation condition on basil oil yield using SFME

Power in the microwave extraction process is an important operating condition that affects the extraction yield. In the extraction process, the amount of energy received by the raw material is converted into heat energy by microwave power, and the heat energy will help the process of removing essential oils from the raw material [10].

In basil leaves oil extraction, determining the optimal power is important because it will affect the temperature during the extraction process. Figure 3 shows the effect of microwave power on temperature. The higher the microwave power, the faster the polar molecules of the material will rotate to produce heat energy, which is detected from an increase in temperature. The temperature-time profile for each power used in the extraction process is shown in Figure 3. The slope of the linear line determines the rate of temperature rise at the profile temperature. From Figure 3, the temperature increase for each power used in the SFME method is 3.35 °C/min, 14.48 °C/min, 18,7 °C/min, 23 °C/min for 100 W, 240 W, 380 W, 540 W microwave power, respectively.

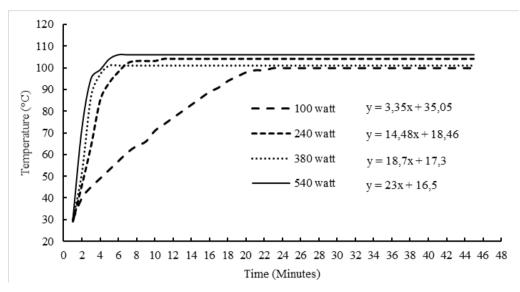


Figure 3. Temperature-time profile for each microwave power

Figure 3 shows the microwave power of 540 W, resulting in the fastest increase in temperature. However, in the extraction process using SFME methods, there is an essential factor of the material that affects the extraction process when using a power of 540 W, not necessarily the yield produced was the most exceptional yield. In this study, the microwave power that provided the highest yield was at 380 W.

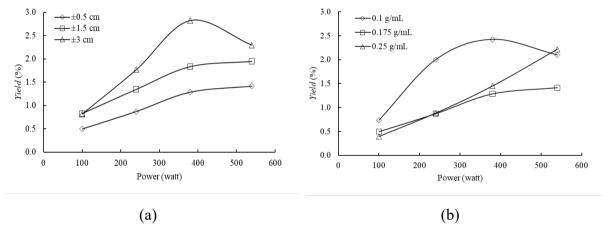


Figure 4. Effect of microwave power on basil oil yield at (a) ratio 0.175 g/ml and (b) size \pm 0.5 cm

Based on Figure 4 (a), there was a tendency to increase the yield as the power increased. Thus, the amount of energy received by the material converted into heat would generate a higher yield of basil oil. Microwaves can accelerate the extraction process for the desorption of compounds targeted from the matrix with low and high power [12]. However, in the leaf intact (± 3 cm), the oil yield of basil was decreased when the power increased from 380

W to 540 W. This is because the ratio of the material space in the distillation flask to the ratio of material to the size of the whole leaf (\pm 3 cm) is more than the other flask. According to the previous study, the fuller the materials in the flask, the slower the oil extraction rate is, since the evaporation process of oil obstructs; thus, it decreases the yield of essential oils [13].

In Figure 4 (b), there is a tendency to increase yield as power increases. However, at the smallest ratio of 0.1 g / mL, the highest yield was obtained at 380 W. It was caused when the microwave power was 540 W, by degradation of materials and components of essential oils at the lowest material ratio, resulting in decreased yield. In this study, the highest yield of extracted basil oil from fresh ingredients by the SFME method was obtained when microwave power was 380 W. This microwave power was the most effective in this study.

3.3 Effect of Ratio Raw Material Mass and Distiller Volume (F/D) on Basil Oil Yield

The mass of material used was 100, 175, and 250 g for each variable size. The mass of this material affected the mass ratio of the material per volume distiller. Figure 5 shows the effect of the ratio of raw material mass and distiller volume (F/D) on basil oil yield, which was studied at the lowest microwave power of 100 W. Low microwave power is expected to minimize the significant effect of microwave heat so that the resulting data is more stable.

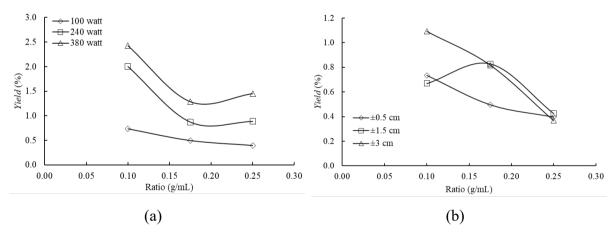


Figure 5. The effect of the ratio on the yield basil oil size ± 0.5 cm and (b) power 100 W

Based on Figures 5 (a) and (b), the higher the F/D ratio, the lower the yield. The optimum yield for the extraction of basil oil with the SFME method was found in the F/D ratio of 0.1 g/mL, which is caused by the smallest ratio of basil extracted with a medium density. The material density factor is the ratio between the mass of the material and the volume capacity of the distiller flask used. The ratio used relates to how much of the raw material enters the

distiller flask. Thus, the oil extraction and evaporation process can proceed perfectly. The material density that is too high and uneven causes the formation of steam lines, "rat holes," which may reduce the yield and quality of essential oils [14]. From a previous study by Kusuma (2017) on patchouli oil extraction using the SFME method with several variations in the ratio of the mass of raw materials to volume of distillers (F/D) 0.06, 0.08, 0.1, and 0.12 g/mL. The highest yield of these variable ratios was obtained at the lowest ratio of 0.06 g/mL.

3.4 Effect of Material Size on Essential Oil Yield

In this study, the size of the materials used is intact (\pm 3 cm), half intact (\pm 1.5 cm), and chopped (\pm 0.5 cm). From Figure 5, we can see the effect of the material size of the basil leaf on the extraction yield using the SFME method. Based on Figure 5, the highest yield is in each power, and the ratio was the size of leaves \pm 3cm. Whereas the leaf size \pm 1.5cm and \pm 0.5 cm yielded lower values, along with the smaller size of the material. This statement is contrary to the previous study. It is mentioned that the smaller material size would result in a higher yield because the small size of the material will accelerate the diffusion process [16]. In this study, the size of the material that produced the optimal yield was the largest. In this study, water content takes the effect of the extraction process. The largest leaf size has the most substantial moisture content. Thus, the extraction process cannot be easily scorched and can be extracted optimally. Meanwhile, the size of the materials with a smaller amount of water content quickly burns, or the ingredients cannot be extracted optimally.

The ratio of 0.1 g/mL resulted in the largest yield when the material size is \pm 0.5 cm. This ratio had a difference with other ratios, which are 0.175 and 0.25 g/mL. With the effect of the water content in fresh basil ingredients, the extraction with the smallest ratio of 0.1 g/mL and the smallest material size of \pm 0.5 cm resulted in a low yield. The small ratio and size of the material contained the water slightly. Thus, the material was scorched more quickly and burned, and that condition caused the material not to be extracted perfectly. However, in this condition, the extraction was carried out at 380 W. Thus, it was possible that the material had been extracted perfectly and produced a large yield.

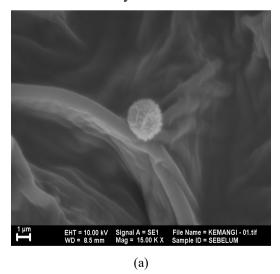
3.5 Analysis of Gas Chromatography-Mass Spectrometry (GC-MS) Basil Oil

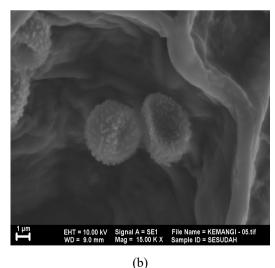
GC-MS analysis was not only used to find out the components contained in essential oils, but also used to determine the levels of each component. As shown in Table 2 on basil oil from fresh basil leaves, the number of components contained in it was 49 components, with the

highest component content being E-Citral, 32.771% and Z-Citral, 27.618%. From these results, it was confirmed that the type of basil used in this study was the citral type, which is in line with research from Mondello et al. (2001) with components of basil essential oil in the form of geranial (E-Citral) 33.70% and mineral (Z-Citral) 27.90%.

Table 2. Components contained in essential oils of basil leaf (ratio of 0.175 g / ml, size $\pm 3 \text{ cm}$, and power 380 W) based on GC-MS analysis

No.	R.T. (min)	Compound	% Area
		Monoterpenes	
1	5.565	β-Ocimene	0.596
2	5.624	β-Myrcene	0.123
3	8.176	trans-chrysanthemal	0.651
4	10.449	Camphene	0.133
5	10.832	Bicyclo [3.1.0]hexane, 6-isopropylidene-1-methyl-	0.112
6	14.351	Naphtalene, decahydro-, cis-	0.732
		Oxygenated Monoterpenes	
7	7.201	D- (+) -Fenchone	0.153
8	7.453	Linalool L	2.607
9	8.002	cis/cis-Photocitral	0.184
10	9.761	Z-Citral	27.618
11	9.857	Piperiton	0.123
12	10.919	(+) -Carvotanacetone	0.269
13	11.398	D-Fenchyl alcohol	0.332
14	11.503	2,6-Octadien-1-ol, 3,7-dimethyl-, acetate	0.649
15	11.973	E-ocimenone	0.141
		Sesquiterpenes	
16	10.275	E-Citral	32.771
17	11.102	(Z)-β-Farnesene	0.332
18	11.459	Copaene	0.24
19	11.66	Cyclohexane, 1-ethenyl-1-methyl-2,4-bis (1-methylethenyl)-, [1S- $(1\alpha,2\beta,4\beta)$]-	0.426
20	11.903	α-Gurjunene	0.228
21	12.078	β-Caryophyllene	5.449
22	12.156	1H-Cyclopenta [1,3]cyclopropa [1,2]benzene, 2,3,3a α , 3b α ., 4,5,6,7-octahydro-4 α -isoprophyl-7 β	0.113
23	12.217	α -Bergamotene	2.201
24	12.443	(E)-β-Farnesene	0.497


No.	R.T. (min)	Compound	% Area	
25	12.487 α-Humulene		1.576	
26	12.557	Bicyclo [7.2.0] undec-4-ene, 4,11,11-trimethyl-8-methylene-		
27	12.739	Naphthalene, 1,2,3,4,4a,5,6,8a-octahydro-7-methyl-4-methylene-1-(1-	0.124	
	12.739	methylethyl)-, $(1\alpha,4a\alpha.,8a\alpha)$ -		
28	12.826 Germacrene-D		2.66	
29	13.096	(+,-)-β-Bisabolene	0.113	
30	13.192	Naphthalene, 1,2,3,4,4a,5,6,8a-octahydro-7-methyl-4-methylene-1-(1-	0.116	
	13.172	methylethyl)-, $(1\alpha,4a\beta,8a\alpha)$ -	0.110	
31	13.297	Naphthalene, 1,2,3,5,6,8a-hexahydro-4,7-dimethyl-1-(1-methylethyl)-,	0.69	
31	13.297	(1S-cis)-	0.09	
32	13.532	cis-α-Bisabolene	4.471	
33	13.671	2-Pentadecen-4-yne, (Z)-	0.233	
		Oxygenated Sesquiterpenes		
34	13.68	Caryophyllene oxide	3.079	
35	14.673	d-Nerolidol	0.261	
		Other Compounds		
36	8.672	Ethenylcyclohexane	2.074	
37	19.393	1,3,5-Cycloheptatriene, 2,4-dihexyl-7, 7-dimethyl-	0.383	
		OtherOxygenated Compounds		
38	5.546	Methyl heptenone	0.689	
39	8.089	Dicyclopropyl Ketone	0.18	
40	8.402	(S,E)-3-Methyl-2-methylene-4 -hexenal	1.601	
41	8.551	Rosefuran epoxide	0.12	
42	8.908	Methyl chavicol	0.21	
43	10.728	2,6-Octadienoic acid, 3,7-dimethyl-, methyl ester	0.17	
44	11.242	Neryl acetate	0.712	
45	11.538	cis-3-Hexenyl Lactate	0.286	
46	16.031	Benzyl benzoate	2.878	
47	17.094	Benzyl salicylate	0.268	
40	17.999	Geranyl benzoate	0.15	
48		2-Buten-1-one, 1-(2,2,5a-trimethylperhydro-1-benzoxiren-1-yl)	0.154	
48	19.645			
	19.645	Monoterpenes	2.347	
	19.645			
	19.645	Monoterpenes	2.347 32.076 52.363	
	19.645	Monoterpenes Oxygenated Monoterpenes	32.076	


No.	R.T. (min)	Compound	% Area
		Other Oxygenated Compounds	7.418

The components contained in essential oils can be classified into several compounds, namely monoterpenes, oxygenated monoterpenes, sesquiterpenes, oxygenated sesquiterpenes, other compounds, and other oxygenated compounds. The oxygenated compound has more influence on the aroma of essential oils compared to other compounds [18]. In this study, based on the GC-MS test, it was found that the number of oxygenated compounds in this basil oil was 42.834%.

3.6 Scanning Electron Microscopy

Scanning Electron Microscopy (SEM) is a test used to analyze the surface structure of materials. In this study, the material analyzed was basil leaves before and after extraction. Based on Figure 6, there are still intact oil glands (perfect shape) in the cross-section of basil leaves before being extracted. However, the oil gland extraction process was not complete because the oil inside had been taken. In the sample of basil leaves after extracting in Figure 6 (b), the shape of the oil gland was only slightly concave and not damaged. This was due to the ratio of the material used when the extraction process was a large ratio of 0.25 g / mL, so there was a possibility that the leaves, which were used for SEM samples, were not perfectly extracted because of the density factor of the material.

Figure 6. SEM results of fresh basil leaves with a magnification of 15,000 times (a) before extraction and (b) after extraction

4. Conclusion

In this study, the optimal operating conditions using the SFME method were 380 W microwave power, the ratio between the mass of the raw material and the volume of the distiller (F/D) 0.1 g/mL, the size of whole basil leaves $(\pm 3 \text{ cm})$, and an extraction time of 60 min. Based on GC-MS analysis, there are 49 components in basil oil, and the most significant component is E-Citral. Thus, the basil ingredients used are classified as Citral type. SEM analysis was used to observe changes in the shape of the oil glands found in basil leaves before and after extraction, which shows that the oil has been extracted. The SFME method significantly reduced extraction time and increased extraction yield compared to the MHD method. SFME was 60 min faster than MHD, yielding a 3.41-fold higher result. Thus, the SFME method can be applied to extract basil oil as an effective and efficient method to obtain higher yields.

REFERENCES

- [1] Indonesia, D. A. & IPB. Indonesia's Essential Oils (in Bahasa Indonesia). (2009).
- [2] S., P. Kemangi dan Selasih (in Bahasa Indonesia). (Trubus Agriwidya, 1996).
- [3] Abubakar, E. M. M. Antibacterial potential of crude leaf extracts of Eucalyptus camaldulensis against some pathogenic bacteria. *African J. Plant Sci.* **4**, 202–209 (2010).
- [4] Nurcahyanti, A., Dewi, L. & Timotius, K. Aktivitas Antioksidan dan Antibakteri Ekstrak Polar dan Non Polar Selasih (O. sanctum L.) (in Bahasa Indonesia). *J. Teknol. dan Ind. Pangan* **21**, (2011).
- [5] Sudarsono, D, G., S, W., IA, D. & Purnomo. *Tumbuhan Obat II (Hasil Penelitian, Sifat-Sifat, dan Penggunaannya) (in Bahasa Indonesia)*. (Pusat Studi Obat Tradisional Universitas Gadjah Mada, 2002).
- [6] R, Tambun, R.R.H, Purba & H.K, Ginting. Extraction of basil leaves (Ocimum canum) oleoresin with ethyl acetate solvent by using soxhletation method. *Mater. Sci. Eng.* 4–11 (2017). doi:10.1088/1757-899X/237/1/012032
- [7] Al Abbasy, D. W., Pathare, N., Al-Sabahi, J. N. & Khan, S. A. Chemical composition and antibacterial activity of essential oil isolated from Omani basil (Ocimum basilicum Linn.). *Asian Pacific J. Trop. Dis.* **5**, 645–649 (2015).
- [8] Chenni, M., Abed, D. El, Rakotomanomana, N., Fernandez, X. & Chemat, F. Comparative Study of Essential Oils Extracted from Microwave Extraction. *Molecules*

- (2016). doi:10.3390/molecules21010113
- [9] Golmakani, M.-T. & Moayyedi, M. Comparison of heat and mass transfer of different microwave-assisted extraction methods of essential oil from Citrus limon (Lisbon variety) peel. *Food Sci. Nutr.* **3**, 506–518 (2015).
- [10] Kusuma, H., Altway, A. & Mahfud, M. Solvent-free microwave extraction of essential oil from dried patchouli (Pogostemon cablin Benth) leaves. *J. Ind. Eng. Chem.* **58**, 343–348 (2017).
- [11] Kusuma, H. S., Kharisma, D. & Putri, Y. Solvent-Free Microwave Extraction of Essential Oil from Dried Basil (Ocimum basilicum L.) Leaves of Basil Oi. *Chem. Chem. Technology* 12, 543–548 (2019).
- [12] Bale, A. S. & Shinde, N. H. Research Article Microwave Assisted Extraction of Essential Oil From Lemon Leaves. *Int. J. Recent Sci. Res.* **4**, 1414–1417 (2013).
- [13] Kusuma, H. S. & Mahfud, M. RSC Advances The extraction of essential oils from patchouli leaves (Pogostemon cablin Benth) using a microwave air-hydrodistillation method as a new green technique. *RSC Adv.* 7, 1336–1347 (2016).
- [14] Guenther, E. *Essential Oils Volume IVB (in Bahasa Indonesia)*. (Universitas Indonesia Press, 1990).
- [15] Kusuma, H. S. & Mahfud, M. Comparison of conventional and microwave-assisted distillation of essential oil from Pogostemon cablin leaves: Analysis and modelling of heat and mass transfer. *J. Appl. Res. Med. Aromat. Plants* **4**, 55–65 (2017).
- [16] Mahfud, M., Putri, D. K. Y., Dewi, I. E. P. & Kusuma, H. S. Extraction of essential oil from cananga (Cananga odorata) using solvent-free microwave extraction: A preliminary study. *Rasayan J. Chem.* **10**, (2017).
- [17] Mondello, L. *et al.* Studies on the essential oil-bearing plants of Bangladesh. Part VIII. Composition of some Ocimum oils O. basilicum L. var. purpurascens; O. sanctum L. green; O. sanctum L. purple; O. americanum L., citral type; O. americanum L., camphor type. *Flavour Fragr. J.* 17, 335–340 (2002).
- [18] Ferhat, M. A., Meklati, B. Y. & Chemat, F. Comparison of different isolation methods of essential oil from Citrus fruits: cold pressing, hydrodistillation and microwave 'dry' distillation. *Flavour Fragr. J.* **22**, 494–504 (2007).