

JOURNAL OF BIOBASED CHEMICALS

Vol. 3 No. 1, 2023, pp. 24 – 38

Extraction of Phenolic Active Compounds from Coffee Leaves (*Coffea sp.*) Using the Ultrasound-Assisted Extraction Method and Total Phenol Analysis

Nur Aini Dwi Alfinaini*, Boy Arief Fachri, Pratamai Shelli, Helda Wika Amini, Istiqomah Rahmawati

Department of Chemical Engineering, University of Jember, Indonesia 681211

(Submitted:17 March 2023; Revised: 22 May 2023; Accepted: 9 June 2023)

Abstract. Coffea sp. is one of the largest plantation commodities in Indonesia, especially coffee leaves containing phenolic compounds. This research was conducted to extract phenolic compounds using the Ultrasound-Assisted Extraction method with ethanol solvent, which aims to determine the optimum operating conditions of extraction and the influence of variations in amplitude, time, and ratio of solvents used. The experimental design used Design Expert 13 software with the response surface method box-Behnken design. The research variables used were amplitude variations (50%, 60%, and 70%), time (10, 20, and 30 minutes), and solvent ratios (0.1, 0.15, and 0.2 g/mL). Based on our study, these parameters affect the total phenolic content. The model equation for the total phenolic content of coffee leaves obtained is Y = 0.1349 - 0.0016 A - 0.0505 B + 0.0010 C + 0.0018 AB + 0.0043 AC - 0.0018 BC - 0.0004 A2 + 0.0178 B2 - 0.0014 C2 (R2 = 0.9758) with the optimum total phenolic content located in the 17th running of 0.209 mg GAE/g under conditions of 20 minutes, the ratio of material to solvent is 0.2 g/mL, and an amplitude of 50%.

Keywords: Coffea sp., phenolic compound, ethanol, ultrasound-assisted extraction.

1. Introduction

Indonesia is known as an agricultural country with a tropical climate; most of the land in Indonesia is used for agricultural land, reaching 82.71% (Badan *et al.*, 2015). One of the farm or plantation products is coffee. In 2016, the total production of coffee in Indonesia was 663,900 tons, and in 2018, the total output increased to 722,500 tons (Luh Gede *et al.*, 2021). Coffee exports ranked fourth in 2018 among the most significant commodities in Indonesia after palm oil, rubber, and coconut, weighing in at 666,000 tons (Riska *et al.*, 2021). The most common types of coffee on the market are Arabica coffee (*Coffea arabica*) and Robusta coffee (*Coffea canephora*).

^{*}corresponding author: dwiaini404@gmail.com

The utilisation of coffee leaves is still not used optimally; so far, the processing of coffee plants has only focused on processing coffee beans. It is often done to make compost without processing it first or as a nutrient-rich drink (Setiawan *et al.*, 2015). According to Campa *et al* (2012), coffee leaves contain mangiferin, which functions to lower cholesterol, which can protect neurons in the brain, and reduce the risk of diabetes. When made into tea, it can relieve pain and boost the immune system. According to Lazuardina *et al* (2012), coffee leaves can be used as something of economic value. Coffee leaves contain alkaloids, caffeine, saponins, flavonoids, and polyphenols, which can be used to remove free radicals in the body and carcinogenic drugs. Compounds contained in coffee leaves have the potential to inhibit inflammation, diabetes, oxidation, and bacterial growth (Khare *et al.*, 2016).

Polyphenols are natural antioxidants, antitumor, and antibiotic compounds that benefit human health. Phenol compounds have one or more hydroxyl groups attached to aromatic compounds; derivatives of phenolic compounds are called the most metabolites produced by plants (Vermerris, 2006). Extraction is a process of separating natural products contained in raw materials with the help of solvents (Saadatin *et al.*, 2019). Compounds will be easy to extract when using the appropriate solvents; the solvents used are organic solvents or inorganic solvents such as ethanol, methanol, acetone, and ethyl acetate (Haslina *et al.*, 2019). Factors that influence the extraction process include the solvent, the size of the material, which aims to increase the contact area of the material with the solvent, and the extraction temperature (Tambun *et al.*, 2016). Research on coffee extraction using the ultrasonic method can be seen in Table 1 below.

Table 1. Coffee extraction by the ultrasonic method

Material	Condition	Results	Reference
Coffee	60% ethanol concentration, time	The highest total phenol	(Xiumin Chen et al.,
Leaves	variations of 10, 20, 30, and 40	amounted to 0.3 mg	2020)
	minutes, 210 W ultrasound power	GAE/g	
Coffee Skin	Concentration of 80% ethanol, 60	The yield and highest	(Adinda et al., 2021)
	mesh sieve, and time variations of	anthocyanin value were	
	10, 20, 30, 40, and 60 minutes	respectively 11% and	
	with 3 times each treatment	136.67 ppm	
Coffee Seed	Ethanol Concentration 70%, 40	The optimum yield values	(Adisya et al., 2019)
1	mesh sieve, time variations of 15,	for caffeine and	
	30, and 60 minutes	chlorogenic acid are	

Material	Condition	Results	Reference
		respectively 4.85 mg/g	
		and 13.06 mg/g	
Coffee Seed	Ethanol Concentration 50%,	The highest antioxidant	(Tangguh &
2	temperature variations 30, 40, 50,	value of 68.9%	Kusumocahyo, 2017)
	and 60 °C, time variations 5, 10,		
	20, 30, 40, and 60 minutes		
Coffee Seed	Ethanol Concentration 60%,	The highest caffeine value	(Guglielmetti et al.,
3	frequency 40 kHz, power 300 W	of 14.24 g/kg dw	2017)

The extraction process can be carried out using various methods; some use conventional and non-conventional methods. Extraction methods often used are maceration, percolation, Soxhlet, reflux or steam distillation, Microwave Assisted Extraction, Enzyme Assisted Extraction, Pulsed-electric Field Extraction, and Ultrasonic Assisted Extraction. Phenolic extraction is generally carried out using the maceration and Soxhlet methods, considering this method is more straightforward and cheaper. Still, the weakness of this method is that it takes longer. So, the ultrasonic-assisted extraction method was used (Mansano *et al.*, 2019). Ultrasonic-assisted extraction (UAE) is an extraction method that produces high yields of bioactive compounds in a relatively short time (Djaeni *et al.*, 2019).

The advantage of using ultrasonic waves in extraction is that they are safer, shorter, and increase the amount of crude yield. The solvent type and concentration difference affect the extraction rate, so the solvent used in the extraction process must have a polarity level like that of the compound identified (Hartanti *et al.*, 2021). Ethanol solvents are often used in the extraction process because it has a low price, are easy to obtain, and have the same polarity level as bioactive compounds or substances, so they are very appropriate to be used to extract phenolic compounds (Noviyanti, 2016)

2. Materials and Methods

2.1 Materials

The materials used in this study included robusta coffee leaves obtained from Badean Village, Jember Regency, East Java. Ethanol with a concentration of 96% (Technical), aquadest (Technical), gallic acid (p.a, E. Merck), Na₂CO₃ (p.a, E. Merck), Folin-cicocalteu reagent (p.a, Planet Kimia).

2.2 Equipment

The tools used in this study included: a blender (Philips HR-2115), oven (Maspion MOT-600), measuring cup (Herma), stirring rod, test tube (Pyrex), Erlenmeyer (Pyrex), filter paper, analytical balance (Ohaus), UV-VIS spectrophotometer (752AP), ultrasonic tool (ultrasonic probe), 60 mesh sieve.

2.3 Methods

2.3.1 Sample Preparation

Coffee leaves are dried using conventional methods with the help of sunlight until the samples are dry. Coffee leaves drying is carried out at a room temperature of 25 °C for 1 week until the water content is <10% (Pristiana *et al.*, 2017). The dry coffee leaves are then crushed using a blender until smooth. The delicate coffee leaves are then sieved using a sieve with a size of 60 mesh (Andriani *et al.*, 2019). Furthermore, coffee leaves are weighed according to the ratio determined by the design expert.

2.3.2 Water Content Analysis

The water content of coffee leaves was determined using the oven method (Fahmi Arwangga *et al.*, 2016). Determining the water content of the simplicia was carried out using the gravimetric (Wijaya, 2022). A total of 5 grams of the sample was put in the oven for 2 hours at 100 °C, then the sample was weighed. Calculation of % water content using the following equation:

$$Water Content = \frac{initial \ mass(g) - final \ mass(g)}{initial \ mas(g)} \times 100\%$$

2.3.3 Coffee Leaves Extraction

Coffee leaves are weighed according to the ratio, prepared, and put into a glass beaker. After that, a solvent is added according to the specified ethanol volume with a concentration of 96% and put into a beaker, mixed with the sample. According to the table below, extraction was carried out using the UAE (Ultrasonic Assisted Extraction) method. The extraction results were filtered using paper, so the filtrate was obtained from the extraction (Lestari *et al.*, 2021). Simplicity extraction was carried out by screening data to determine the experimental run. Run data that has been processed with test points from BBD (Box-Behnken Design) can be seen in Table 2 below:

			=
No	Time (Minute)	Ratio (g/mL)	Amplitude (%)
1	30	0.15	70
2	20	0.15	60
3	20	0.20	50
4	20	0.15	60
5	30	0.20	60
6	10	0.15	70
7	10	0.20	60
8	20	0.10	50
9	30	0.15	50
10	10	0.10	60
11	20	0.20	70
12	30	0.10	60
13	20	0.15	60
14	10	0.15	50
15	20	0.15	60
16	20	0.15	60
17	20	0.10	70
	•	•	

Table 2. Box-Behnken Design test point screening data

2.3.4 Total Phenol Analysis

2.3.4.1 Preparation of 100 ppm gallic acid solution

A 100 ppm gallic acid solution is made by weighing 0.01 grams of gallic acid with 1 mL of ethanol and adding distilled water until the volume reaches 100 mL (Pristiana *et al.*, 2017).

2.3.4.2 Determination of the maximum wavelength of gallic acid

The maximum wavelength of gallic acid is determined by taking 1 mL of gallic acid mother liquor with a concentration of 100 ppm in a test tube and adding 1 mL of Folin-Ciocalteu reagent. The mixed solution was shaken until homogeneous and left at room temperature for 4 to 8 minutes. The following process was adding 4 mL of 10% Na₂CO₃ solution to the test tube, then shaking it until it was homogeneous, and allowing it to stand for 15 minutes. Then, the solution was analyzed with a UV-VIS spectrophotometer with a wavelength range of 700-800 nm (Pristiana *et al.*, 2017).

2.3.4.3 Preparation of a gallic acid calibration curve with Folin-Ciocalteu reagent

Preparation of the calibration curve begins with taking 1 mL, 3 mL, 5 mL, and 7 mL of 100 ppm gallic acid mother liquor. Then, it was diluted to 10 mL with 10 ppm, 30 ppm, 50 ppm, and 70 ppm, respectively. Each solution was taken in 0.2 mL and put into a test tube. 1 mL of Folin-Ciocalteu reagent was added, homogenized, and allowed to stand for 5 minutes. Then 2 mL of 10% Na₂CO₃ was added, homogenized, and allowed to stand for 5 minutes. In the final step, the solution was added with distilled water until it reached a volume of 10 mL and allowed to stand for 40 minutes. Then the wavelength was measured until a calibration curve was obtained with the regression equation y = ax+b (Pristiana *et al.*, 2017).

2.3.4.4 Determination of total phenol content by the Folin-Ciocalteu method

To determine the total phenol content, the initial step was to take 2 mL of extract, add 8 mL of distilled water, and add 1 mL of Folin-Ciocalteu reagent, then shake until the mixture was homogeneous and allow to stand for 8 minutes. The next step was to put 3 mL of 10% Na₂CO₃ into the mixture, shake again until the solution was homogeneous, and allow it to stand for 40 minutes at room temperature. Then, the absorption was measured using a UV-VIS spectrophotometer at the maximum wavelength obtained (Pristiana *et al.*, 2017).

2.3.4.5 Observed Parameters

The parameters observed were the determination of water content and total phenol analysis using the UV-VIS Spectrophotometry method (Pristiana *et al.*, 2017).

3. Result and Discussion

3.1 Extraction of Total Phenolic Content from Coffee Leaves (Coffea Sp.)

The research was conducted from October 2022 to December 2023 at the Chemistry and Bioprocess Laboratory, Chemical Engineering Study Program, Department of Mechanical Engineering, Faculty of Engineering, University of Jember. This study used coffee leaves (*Coffea* Sp.) to be extracted and tested for their total phenolic content using the ultrasonic wave extraction method. The gravimetric method must determine the water content value, where the value must be less than 10%. The water content value obtained from coffee leaves is 7.5% (Wijaya, 2022).

The factors that affect the extraction of coffee leaves are the extraction time, the ratio of solvents, and the power of the ultrasonic device. According to Ibrahim *et al* (2015), time affects the extraction results. Time that is too long and exceeds the optimum limit can cause

changes in structure; in this condition, an oxidation process occurs for bioactive compounds, affecting the extraction results, which tend to decrease (Yuliani *et al.*, 2019). Gonzales-Centeno *et al* (2014) stated that applying power to the ultrasonic device can increase the yield efficiency of the extraction process. This happens because the cavitation effect makes it easier for the solvent to diffuse into the solid material during extraction (Dzah *et al.*, 2020). The linear equation for the gallic acid standard curve used to determine the total phenolic content of the sample is y = 0.0763x - 0.0993 (R2 = 0.9758).

Table 3. Results of analysis of the total phenolic content of coffee leaves

No	Time (minutes)	The Ratio of	Amplitude	Total Phenolic Content
		Ingredients to	(%)	(mg GAE/g sample)
		Solvents (g/mL)		
1	30	0.15	70	0.138
2	20	0.15	60	0.132
3	20	0.20	50	0.097
4	20	0.15	60	0.142
5	30	0.20	60	0.101
6	10	0.15	70	0.125
7	10	0.20	60	0.108
8	20	0.10	50	0.200
9	30	0.15	50	0.131
10	10	0.10	60	0.207
11	20	0.20	70	0.098
12	30	0.10	60	0.192
13	20	0.15	60	0.130
14	10	0.15	50	0.135
15	20	0.15	60	0.131
16	20	0.15	60	0.136
17	20	0.10	70	0.209

The table above shows that the lowest total phenolic content obtained was 0.097 mg GAE/g and the highest was 0.209 mg GAE/g. The lowest total phenolic content was obtained from a combination of parameters of 20 minutes, a ratio of 0.2 g/mL of substance to a solvent, and an amplitude of 50%. The highest total phenolic content was obtained from a combination of parameters of 20 minutes, a ratio of 0.1 g/mL of substance to solvent, and an amplitude of 70%. The difference in the total phenolic content produced is due to differences in extraction

conditions, variations, and other factors that affect the extraction process, including sample preparation before extraction (Putra *et al.*, 2020).

3.2 Statistical Analysis

The total phenolic content data was then analysed using Analysis of variance (ANOVA) to prove that the parameters used in the extraction process can affect the total phenolic content. The ANOVA results are presented in the table below.

Table 4. ANOVA Results

Source	Sum of	df	Mean	F-value	p-value	
	Squares		Square			
Model	0.0218	9	0.0024	56.39	< 0.0001	significant
A-Time	0.0000	1	0.0000	0.4759	0.5125	
B-Ratio	0.0204	1	0.0204	473.41	< 0.0001	
C-Amplitude	8.002E-06	1	8.002E-06	0.1859	0.6794	
AB	0.0000	1	0.0000	0.3019	0.5998	
AC	0.0001	1	0.0001	1.68	0.2358	
BC	0.0000	1	0.0000	0.2845	0.6103	
A^2	8.326E-07	1	8.326E-07	0.0193	0.8933	
\mathbf{B}^2	0.0013	1	0.0013	31.09	0.0008	
C^2	8.337E-06	1	8.337E-06	0.1936	0.6732	
Residual	0.0003	7	0.0000			
Lack of fit	0.0002	3	0.0001	2.64	0.1855	not
						significant
Pure Error	0.0001	4	0.0000			
Cor Total	0.0221	16				

Parameters can be said to be significant if the probability value (p-value) from the analysis results is ≤ 0.05 or 5%, and the lack of fit value with a p-value ≥ 0.05 (Sari *et al.*, 2020). The p-value generated in this study was <0.0001, so the parameters of extraction time, ratio, and amplitude of coffee leaves with solvents significantly affected the response, namely the total phenolic content (Rohmah *et al.*, 2022). Meanwhile, the p-value for lack of fit is 0.1855 or 18.55%, which is insignificant. Lack of fit is a discrepancy or deviation between experimental data and predictive model data (Pertiwi, 2018 & Rahmawaty, 2014).

Table 5. Summary Models

\mathbb{R}^2	R ² adjusted	R ² predicted
0.9864	0.9689	0.8482

The research results can be stated according to the model if the resulting R^2 value exceeds 0.75 or is close to (Haryani, 2019, & Marjoni, 2015). The ANOVA results yield an R^2 value of 0.9864, indicating that the model follows the research results. The resulting adjusted R^2 value of 0.9689 indicates a relationship between extraction time, ratio, and amplitude of coffee leaves and solvents to the response to total phenolic content (Rohmah *et al.*, 2022). The total phenolic content as a response to the extraction parameters is modeled using the following equation $n = 0.1349 - 0.0016 A - 0.0505 B + 0.0010 C + 0.0018 AB + 0.0043 AC - 0.0018 BC - 0.0004 A^2 + 0.0178 B^2 - 0.0014 C^2$

A, B, and C are the variables of extraction time, ratio, and amplitude of coffee leaves. If the variable coefficient is negative, it indicates a decrease in value in the total phenolic content and vice versa (Rohmah *et al.*, 2022). Based on the equation above, the extraction ratio variable affects the total phenolic content. The relationship between experimental data and model data is presented in the figure below.

Figure 1. Relationship between experimental data and predictive data

The picture above shows that the graph of experimental data with model prediction data is entirely accurate, and there is a strong correlation between experimental data and model data. The distance between the location of the data and the trendline shows the accuracy of the data; the closer the data is to the line, the more accurate the data (Yilmaz, 2017). Based on the research results, the data plot touches the line, which shows that the experimental data is close to the model data with an R² value of 0.9864.

3.3 Effect of Extraction Parameters on Total Phenolic Content

Figure 2. Effect of interaction between solvent ratio

Figure 3. Effect of amplitude interaction with the ratio of solvents

Figure 4. Effect of amplitude interaction with time

The image above is a graph showing the effect of the variable ratio of ingredients and extraction time on the total phenolic content. The image contains a combination of parameters that affect the response value through a colour change. Red indicates the highest total phenolic content, while dark blue indicates the lowest total content. The longer the extraction time and the higher the ratio of ingredients, the lower the total phenolic content. This study's optimum total phenolic content was 0.209 mg GAE/g sample. Based on the total phenolic content obtained, the smaller the particle size, the greater the contact with the solvent, making the material easier to extract (Yuliani *et al.*, 2019). This is consistent with research conducted by Xiumin *et al* (2020), the variable ratio of coffee leaves to solvents shows that the higher the ratio of coffee leaves to solvents, the higher the total phenolic content obtained. This study showed an increase in yield when using a ratio of materials to solvents from 10:1 to 20:1 g/mL. However, using a ratio of material to solvent that is too high will require a long extraction time (Zhang *et al.*, 2018). The low total phenolic content from the extraction process is also affected by the presence of unwanted components.

4. Conclusions

Based on the research that has been done, it can be concluded that the extraction parameters (time, ratio of material to solvent, and amplitude) affect the total phenolic content. The total phenolic content equation model obtained $Y = 0.1349 - 0.0016 \text{ A} - 0.0505 \text{ B} + 0.0010 \text{ C} + 0.0018 \text{ AB} + 0.0043 \text{ AC} - 0.0018 \text{ BC} - 0.0004 \text{ A2} + 0,0178 \text{ B2} - 0.0014 \text{ C2} (R^2 = 0.9758)$ with the optimum total phenolic content of the study located on the 17th running, which is 0.209 mg GAE/g.

ACKNOWLEDGEMENTS

Provide financial and other support for conducting the research and/or preparing the article.

REFERENCES

- Alfinaini, N. A. D. A., Boy Arief Fachri, Pratamai Shelli, Helda Wika Amini, & Istiqomah Rahmawati. (2023). Extraction of Phenolic Active Compounds from Coffee Leaves (Coffea sp.) Using the Ultrasound Assisted Extraction Method and Total Phenol Analysis. *Journal of Biobased Chemicals*, 3(1), 25–39. https://doi.org/10.19184/jobc.v3i1.278
- Amini, H. W., Pratiwi, W., Hartanto, G. P. ., Palupi, B., Fachri, B. ., Rizkiana, M. F., & Rahmawati, I. (2022). Ekstraksi Limbah Kulit Kopi Robusta Dari Desa Tanah Wulan Kecamatan Maesan Kabupaten Bondowoso Dengan Etil Asetat Serta Analisa Aktivitas Antioksidannya. *E Prosiding Kolokium Hasil Penelitian Dan Pengabdian Kepada Masyarakat*, 87–92.
- Andriani, M., Permana, i D. G. M., & Widarta, I. W. (2019). Pengaruh Suhu dan Waktu Ekstraksi Daun Belimbing Wuluh (Averrhoa Bilimbil.) Terhadap Aktivitas Antioksidan Dengan Metode Ultrasonic Assisted Extraction (UAE). *Jurnal Ilmu Dan Teknologi Pangan*, 8(3), 330–340.
- Ardianti, A., & Kusnadi, J. (2014). Ekstraksi Antibakteri Dari Daun Berenuk (Crescentia cujete Linn.) Menggunakan Metode Ultrasonik. *Jurnal Pangan Dan Agroindustri*, 2(2), 28–35.
- Budiawan, L., Susilo, B., & Hendrawan, Y. (2014). Pembuatan Dan Karakterisasi Briket Bioarang Dengan Variasi Komposisi Kulit Kopi Preparation and characterization of bio charcoal briquettes from sawdust and coffee shell with variation of composition coffee shell. *Pembuatan Dan Karakterisasi Briket Bioarang Dengan Variasi Komposisi Kulit Kopi. Jurnal Bioproses Komoditas Tropi. Vol. 2, No. 2. 2014. Hal: 152-160.*, 2(2), 152–160. http://webcache.googleusercontent.com/search?q=cache:TGTIz9W-ODUJ:jbkt.ub.ac.id/index.php/jbkt/article/view/151+&cd=1&hl=id&ct=clnk&client=fire fox-b-abv
- Campa, C., Mondolot, L., Rakotondravao, A., Bidel, L. P. R., Gargadennec, A., Couturon, E., La Fisca, P., Rakotomalala, J. J., Jay-Allemand, C., & Davis, A. P. (2012). A survey of mangiferin and hydroxycinnamic acid ester accumulation in coffee (Coffea) leaves: biological implications and uses. *Annals of Botany*, 110(3), 595–613.

- https://doi.org/10.1093/aob/mcs119
- Chen, S., Zhang, H., Yang, L., Zhang, S., & Jiang, H. (2023). Optimization of Ultrasonic-Assisted Extraction Conditions for Bioactive Components and Antioxidant Activity of Poria cocos (Schw.) Wolf by an RSM-ANN-GA Hybrid Approach. *Foods*, *12*(3). https://doi.org/10.3390/foods12030619
- Chen, X., Ding, J., Ji, D., He, S., & Ma, H. (2020). Optimization of ultrasonic-assisted extraction conditions for bioactive components from coffee leaves using the Taguchi design and response surface methodology. *Journal of Food Science*, 85(6), 1742–1751. https://doi.org/10.1111/1750-3841.15111
- Dewi, R. P., Saputra, T. J., & Widodo, S. (2021). Studi Potensi Limbah Kulit Kopi Sebagai Sumber Energi Terbarukan Di Wilayah Jawa Tengah. *Journal of Mechanical Engineering*, 5(1). https://doi.org/10.31002/jom.v5i1.3946
- Fachri, B. A., Abdilla, R. M., Rasrendra, C. B., & Heeres, H. J. (2015). Experimental and modelling studies on the uncatalysed thermal conversion of inulin to 5-hydroxymethylfurfural and levulinic acid. *Sustainable Chemical Processes*, *3*(1), 1–11. https://doi.org/10.1186/s40508-015-0035-4
- Fitriandi, P., Hardiani, H., & Mustika, C. (2019). Analisis sub sektor perkebunan Provinsi Jambi. *E-Jurnal Perspektif Ekonomi Dan Pembangunan Daerah*, 8(1), 15–30. https://doi.org/10.22437/pdpd.v8i1.5006
- Guglielmetti, A., D'Ignoti, V., Ghirardello, D., Belviso, S., & Zeppa, G. (2017). Optimisation of ultrasound and microwave-assisted extraction of caffeoylquinic acids and caffeine from coffee silverskin using response surface methodology. *Italian Journal of Food Science*, 29(3), 409–423.
- Hapsari, A. T., Kunarto, B., & Putri, A. S. (2021). Ekstraksi Kulit Kopi Robusta (Coffea canephora) Pada Berbagai Lama Waktu Ultrasound-Assisted Extraction Terhadap Antosianin dan stabilitasnya Selama Pemanasan. *Jurnal Mahasiswa, Food Technology Agricultural Product*, 3(2), 81–91.
- Hartanti, A. I., Dewa, I., Mayun Permana, G., Kadek, G. A., & Puspawati, D. (2021). Itepa: Jurnal Ilmu dan Teknologi Pangan, Pengaruh Konsentrasi Etanol Pada Metode Ultrasonikasi Terhadap Aktivitas Antioksidan Ekstrak Daun Gonda (Sphenoclea zeylanica) Effect Of Ethanol Concentration In Ultrasonication Method On Antioxidant Activity Of Gonda Leaf Extract (Sphenoclea zeylanica). *Itepa (Jurnal Ilmu Dan Teknologi Pangan)*, 10(2), 163–171.
- Haslina, Nazir, N., Wahjuningsih, S. B., & Larasati, D. (2019). The influence of type of solvent and extraction temperature of corn silk extracts. *International Journal on Advanced Science, Engineering and Information Technology*, *9*(3), 911–915. https://doi.org/10.18517/ijaseit.9.3.9037
- Ibrahim, A. M., Sriherfyna, F. H., & Yunianta. (2015). Pengaruh Suhu dan Lama Waktu Ekstraksi Terhadap Sifat Kimia dan FIsik pada Pembuatan Minuman Sari JAhe Merah (Zingiber officinale var. Rubrum) dengan Kombinasi Penambahan Madu sebagai Pemanis. *Jurnal Pangan Dan Agroindustri*, 3(2), 530–541.
- Kusnadi, J., Andayani, D. W., Zubaidah, E., & Arumingtyas, E. L. (2019). EKSTRAKSI

- SENYAWA BIOAKTIF CABAI RAWIT (CAPSICUM FRUTESCENS L.) MENGGUNAKAN METODE EKSTRAKSI GELOMBANG ULTRASONIK Extraction of Bioactive Compound in Chilli Pepper (Capsicum frutescens L.) with Ultrasonic Asissted Extraction Methods. *Jurnal Teknologi Pertanian*, 20(2), 79–84.
- Kusumocahyo, S. P., Wijaya, S., Dewi, A. A. C., Rahmawati, D., & Widiputri, D. I. (2020). Optimization of the extraction process of coffee pulp as a source of antioxidant. *IOP Conference Series: Earth and Environmental Science*, 443(1). https://doi.org/10.1088/1755-1315/443/1/012052
- Ladeska, V., Saudah, S., & Inggrid, R. (2022). Potensi Antioksidan, Kadar Fenolat dan Flavonoid Total Ranting Tetracera indica serta Uji Toksisitas terhadap sel RAW 264,7. *Jurnal Sains Farmasi & Klinis*, 9(2), 95. https://doi.org/10.25077/jsfk.9.2.95-104.2022
- Lazuardina, B. A., Farah, D., Purba, W., Rusindiyanto, & Defri, I. (2022). Pemanfaatan Limbah Daun Kopi Sebagai Minuman Kesehatan di Desa Suberrejo, Jawa Timur. *Jurnal Pengabdian Masyarakat Teknik Mesin*, 2(1), 72–80.
- Lestari, L. G. M., Antara, N. S., & Suwariani, N. P. (2021). Pengaruh Suhu Awal dan Waktu Infusi terhadap Aktivitas Antibakteri dan Antioksidan Ekstrak Minuman Herbal Daun Kopi Robusta. *Jurnal Rekayasa Dan Manajemen Agroindustri*, *9*(1), 85. https://doi.org/10.24843/jrma.2021.v09.i01.p09
- Mardwianta, B., Subarjo, A. H., Hermawan, S. D., & Husaini, M. (2020). Pengolahan Bioarang sebagai Pengganti Biogas untuk Mendukung Proses Roasting Pengolahan Kopi Arabica dan Ketahanan Energi. *Angkasa Jurnal Ilmiah Bidang Teknologi*, 12(1).
- Marlina Kristina, C. V., Ari Yusasrini, N. L., & Yusa, N. M. (2022). Pengaruh Waktu Ekstraksi Dengan Menggunakan Metode Ultrasonic Assisted Extraction (UAE) Terhadap Aktivitas Antioksidan Ekstrak Daun Duwet (Syzygium cumini). *Jurnal Ilmu Dan Teknologi Pangan (ITEPA)*, 11(1), 13. https://doi.org/10.24843/itepa.2022.v11.i01.p02
- Noviyanti. (2016). Pengaruh kepolaran pelarut terhadap aktivitas antioksidan ekstrak etanol daun jambu brazil batu (Psidium guineense L.) dengan metode DPPH. *Jurnal Farmako Bahari*, 7(1), 29–35.
- Pertiwi, M. G. (2018). Aplikasi Response Surface Methodology (RSM) untuk Meningkatkan Kuat Tekan Paving Block dengan Campuran Abu Ampas Tebu. *Artikel Ilmiah Tugas Akhir*, 1–15.
- Putra, I. K. W., Puta, G. P. G., & Wrasiati, L. P. (2020). Pengaruh Perbandingan Bahan dengan Pelarut dan Waktu Maserasi terhadap Ekstrak Kulit Biji Kakao (Theobroma cacao L.) sebagai Sumber Antioksidan The Effect Of Ratio Between Material And Solvent And Maceration Time On Cocoa Beans Husk Ekstract (Theobroma ca. *Jurnal Rekayasa Dan Manajemen Agroindustri Vol.*, 8(2), 167–176.
- Rahmawaty, F., & Sutanto, H. T. (2014). Penerapan Metode Permukaan Respon untuk Optimalisasi Proses Sealing pada Pengemasan Produk Makanan Jelly. *Jurnal Ilmiah Matematika*, 3(1), 1–6.
- Ramadhani, S. F., Utama, M. J., & Ariani, A. (2023). Pembuatan Biobriket Dari Limbah Kopi Dan Sekam Padi Sebagai Bahan Bakar Alternatif. *DISTILAT: Jurnal Teknologi Separasi*, 7(2), 210–217. https://doi.org/10.33795/distilat.v7i2.224

- Ristiana, D. (2017). Aktivitas Antioksidan Dan Kadar Fenol Berbagai Ekstrak Daun Kopi (Coffea Sp.): Potensi Aplikasi Bahan Alami Untuk Fortifikasi Pangan. *Jurnal Aplikasi Teknologi Pangan*, 6(2), 89–92. https://doi.org/10.17728/jatp.205
- Riza Marjoni, M., & Devi Novita, A. (2015). Kandungan Total Fenol Dan Aktivitas Antioksidan Ekstrak Air Daun Kersen (Muntingia calabura L.) Total Content of Fenol and Antioxidant Activity of The Aqueous Extract of Cherry Leaf (Muntingia calabura L.). *Jurnal Kedokteran Yarsi*, 23(3), 187–196.
- Rohmah, F. U., Rahmawati, A., Rizkiana, M. F., & Susanti, A. (2022). Optimization of Extraction of Bioactive Compound from Pegagan Leaves Using Ethanol Solvent With Microwave-Assisted Extraction Method (MAE). *Journal of Biobased Chemicals*, *2*(1), 40–52. https://doi.org/10.19184/jobc.v2i1.119
- Rondang Tambun, Harry P. Limbong, Christika Pinem, & Ester Manurung. (2017). Pengaruh Ukuran Partikel, Waktu Dan Suhu Pada Ekstraksi Fenol Dari Lengkuas Merah. *Jurnal Teknik Kimia USU*, 5(4), 53–56. https://doi.org/10.32734/jtk.v5i4.1555
- Saadatian, M., & Asiaban, K. (2019). Effect of solvent, time and temperature on the some chemical properties of Salep tuber (Anacamptis Collina). *International Journal of Botany Studies*, 4(4), 71–77. https://www.researchgate.net/publication/334524025_International_Journal_of_Botany_Studies_Effect_of_solvent_time_and_temperature_on_the_some_chemical_properties_of_Salep_tuber_Anacamptis_Collina
- Sari, B. L., Triastinurmiatiningsih, T., & Haryani, T. S. (2020). Optimasi Metode Microwave-Assisted Extraction (MAE) untuk Menentukan Kadar Flavonoid Total Alga Coklat Padina australis. *ALCHEMY Jurnal Penelitian Kimia*, *16*(1), 38. https://doi.org/10.20961/alchemy.16.1.34186.38-49
- Saverus. (2019). No 主観的健康感を中心とした在宅高齢者における 健康関連指標に関する共分散構造分析Title. *Jurnal Kajian Pendidikan Ekonomi Dan Ilmu Ekonomi*, 2(1), 1–19. http://www.scopus.com/inward/record.url?eid=2-s2.0-84865607390&partnerID=tZOtx3y1%0Ahttp://books.google.com/books?hl=en&lr= &id=2LIMMD9FVXkC&oi=fnd&pg=PR5&dq=Principles+of+Digit al+Image+Processing+fundamental+techniques&ots=HjrHeuS
- Setiawan, E. A., Rahardian, D., & Siswanti. (2015). Pengaruh Penyaringan Daun Kopi Robusta (Coffea robusta) Terdahap Karakteristik Kimia dan Sensory Minuman Penyegar. *Jurnal Teknosains Pangan*, 4(2), 1–9. https://jurnal.uns.ac.id/teknosains-pangan/article/view/4678/4062
- Setyawan, B., & Ulfa, R. (2019). Analisis mutu briket arang dari limbah biomassa campuran kulit kopi dan tempurung kelapa dengan perekat tepung tapioka. *Edubiotik : Jurnal Pendidikan, Biologi Dan Terapan, 4*(02), 110–120. https://doi.org/10.33503/ebio.v4i02.508
- Suryanto, E., & Taroreh, M. R. I. (2020). ULTRASOUND-ASSISTED EXTRACTION ANTIOKSIDAN SERAT PANGAN DARI TONGKOL JAGUNG (Zea mays L.). *Chemistry Progress*, 12(2). https://doi.org/10.35799/cp.12.2.2019.27932
- Syakfanaya, A. M., Saputri, F. C., & Mun'im, A. (2019). Simultaneously extraction of caffeine

- and chlorogenic acid from Coffea canephora bean using natural deep eutectic solvent-based ultrasonic assisted extraction. *Pharmacognosy Journal*, 11(2), 267–271. https://doi.org/10.5530/pj.2019.11.41
- Tangguh, P., & Kusumocahyo, S. P. (2017). Extraction of coffee silverskin to convert waste into a source of antioxidant. *AIP Conference Proceedings*, 1803. https://doi.org/10.1063/1.4973156
- Unzilatirrizqi D., Y. E. R., & Wadli. (2022). An alternative bio-briquettes energy of coffee grounds and onion waste combination. *Jurnal Ilmu Lingkungan*, 16(2), 141–149. https://doi.org/10.31258/jil.16.2.p.
- Vermerris, W., & Nicholson, R. (2006). Phenolic compound biochemistry. *Phenolic Compound Biochemistry*, 1–276. https://doi.org/10.1007/978-1-4020-5164-7
- Wibowo, H., Kunarto, B., & Larasati, D. (n.d.). AKTIVITAS ANTIOKSIDAN EKSTRAK ETANOLIK BIJI KELOR (Moringa oleifera) PADA BERBAGAI LAMA EKSTRAKSI BERBANTU GELOMBANG ULTRASONIK Antioxidant activity of moringa seed (Moringa oleifera) etanolic extract on ultrasonic-assissisted extraction long tiem.
- Wijaya. (2022). Penetapan Kadar Air Simplisia Daun Kemangi (Ocimum Basilicum L.) Berdasarkan Perbedaan Metode Pengeringan. *Jurnal Riset Kefarmasian Indonesia*, 4(2), 185–199.
- Yılmaz, T., & Tavman, S. (2017). Modeling and Optimization of Ultrasound Assisted Extraction Parameters using Response Surface Methodology for Water Soluble Polysaccharide Extraction from Hazelnut Skin. *Journal of Food Processing and Preservation*, 41(2). https://doi.org/10.1111/jfpp.12835
- Yuliani, S. H., Sandrapitaloka, A. S., Restiana, F. R., Aji, P. D. T., Gani, M. R., & Riswanto,
 F. D. O. (2019). Effects of particle size, extraction time, and solvent on daidzein yield extracted from tempeh. *Jurnal Farmasi Sains Dan Komunitas*, 16(1), 44–49.
- Zhang, Q. W., Lin, L. G., & Ye, W. C. (2018). Techniques for extraction and isolation of natural products: A comprehensive review. *Chinese Medicine (United Kingdom)*, 13(1), 1–26. https://doi.org/10.1186/s13020-018-0177-x