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Abstract 
Hepatitis is a dangerous disease that can cause liver damage. It is often difficult to diagnose because the symptoms of different 
categories of hepatitis are hard to distinguish. Hepatitis that is not promptly and properly managed, especially in individuals with 
chronic liver conditions, can lead to complications. This study aims to improve model performance in hepatitis diagnosis using 
medical data from hepatitis A and B patients at Citra Husada Hospital in Jember. The results show that the method of gridsearch 
tuning with SMOTE and SFS is very effective in enhancing the performance of the random forest and extra tree algorithms in 
managing hepatitis symptom data. The best performance was achieved by the random forest algorithm with an 80:20 data ratio, 
reaching the highest accuracy of 94.87%, recall of 95.96%, precision of 93.33%, f1-score of 94.07%, specificity of 97.97%, and 
ROC AUC of 99.13%. 
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1. Introduction 
Hepatitis is a dangerous disease caused by liver injury, 

characterized by inflammation of the liver and damage to 
hepatocytes. Inflammation can lead to the death of liver cells 
and affect liver function. Hepatitis is caused by a viral infec-
tion, and these viruses are categorized into hepatitis A, hepa-
titis B, hepatitis C, hepatitis D, hepatitis E, and hepatitis G [1], 
[2], [3]. According to data from the Jember Health Office, 
cases of hepatitis A in Jember increased to 217 cases at the 
end of 2019. Meanwhile, hepatitis B cases, based on data from 
the Ministry of Health, are predominantly transmitted from 
mother to child in Indonesia. East Java was recorded as the 
province with the highest national cases of pregnant women 

testing positive for hepatitis B, with a total of 8,269 cases in 
2022. 

The clinical symptoms of different types of hepatitis cannot 
be distinguished from one another. The most common symp-
toms include fever, jaundice (yellowing of the eyes and skin), 
weakness, fatigue, nausea, vomiting, abdominal pain, arthral-
gia (joint pain), myalgia (muscle pain), diarrhea, anorexia 
(eating disorder or loss of appetite), and dark-colored urine. 
Not everyone infected will experience all of these symptoms 
[4], [5]. This can complicate diagnosis and requires further ex-
amination. Hepatitis that is not promptly and properly treated, 
especially in individuals with chronic liver disorders, can lead 
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to complications such as liver failure, cirrhosis, fulminant hep-
atitis, or liver cancer (hepatocellular carcinoma) [6]. However, 
diagnosing hepatitis involves the clinical interpretation of var-
ious symptoms, risk factors, laboratory tests, and vital signs, 
which is a challenging task. This task becomes even more 
complex if the available data is unclear. This can slow down 
the decision-making process for doctors, even those with ex-
tensive experience. Human diagnosis is not entirely accurate 
as humans are prone to errors [1]. 

Therefore, to process diverse data, avoid clinical bias, and 
reduce evaluation time, this study proposes the application of 
machine learning. This study will process symptom data using 
machine learning for hepatitis A and hepatitis B. Hepatitis A 
is an inflammation of the liver caused by the hepatitis A virus 
(HAV) [7]. Hepatitis B is an infectious disease caused by liver 
inflammation due to the hepatitis B virus [8]. Machine learn-
ing is a branch of artificial intelligence that enables systems to 
learn from experience, allowing them to make predictions or 
decisions without being explicitly programmed [9]. Machine 
learning is divided into four categories: supervised learning, 
semi-supervised learning, unsupervised learning, and rein-
forcement learning [10]. To optimize model performance, this 
study uses sequential feature selection and gridsearch, with 
the implementation of SMOTE for data balancing. Sequential 
feature selection allows researchers to choose the most rele-
vant and significant features in processing hepatitis symptom 
data [11]. Additionally, by using gridsearch, researchers can 
find the best parameter combinations for the Random Forest 
and Extra Tree algorithms [12]. The study will compare the 
Extra Tree and Random Forest algorithms by applying se-
quential feature selection before and after gridsearch optimi-
zation, with and without SMOTE. This comparison will help 
in selecting the most suitable model for processing hepatitis 
symptom data and ensuring optimal performance in machine 
learning. 

This research aims to analyze and evaluate the performance 
comparison of random forest and extra tree machine learning 
optimization models using sequential feature selection and 
gridsearch with the application of SMOTE to determine the 
most suitable model for managing hepatitis disease symptom 
data to obtain high accuracy. The technique used is data pro-
cessing using clinical data. This research also aims to help in 
managing hepatitis disease symptom data to detect and diag-
nose hepatitis disease more efficiently by applying machine 
learning models.  

2. Research Method (14 Pt) 

This research aims to compare and evaluate the per-
formance of optimized random forest and extra trees 
models using sequential feature selection and gridsearch, 
along with applying SMOTE to address data imbalance. 
The objective is to find the most suitable model for ana-
lyzing hepatitis symptom data to achieve high accuracy. 

Furthermore, this research is expected to aid in the early 
detection and more efficient diagnosis of hepatitis using 
clinical data. A flowchart illustrating the proposed meth-
odology is presented in Figure 1. 

2.1. Data Description 

The data used in this study were medical records of hepatitis 
A and hepatitis B patients obtained from Citra Husada Jember 
Hospital. The dataset consists of 130 features and 1 target col-
umn used to determine whether an individual is infected with 
hepatitis A or hepatitis B, or neither. There are 156 data points 
in total, with 65 data points from patients infected with hepa-
titis A, 51 data points from patients infected with hepatitis B, 
and 40 data points from uninfected patients. 

 

Figure 1. Flowchart illustrating the proposed methodology 

2.2 Data Preprocessing  

Data preprocessing is the initial phase in data processing. It 
involves transforming raw data, which is often inconsistent 
and in an unsuitable format, into usable and processable data. 
In this research, the data preprocessing steps include feature 
(column) removal, duplicate data checking, duplicate data re-
moval, missing value checking, data analysis and visualiza-
tion, missing value handling, data encoding, data transfor-
mation, outlier detection, dataset splitting, and data standard-
ization. 

2.3 Balancing Data (SMOTE) 

SMOTE is a technique designed to address class imbalance 
in datasets. It generates synthetic samples for the minority 
class by interpolating feature values between an instance and 
its nearest neighbours. Data balancing is a process employed 
to address imbalanced datasets. Given the imbalance in the 
distribution of hepatitis A, hepatitis B, and non-hepatitis cases 
in our dataset, the SMOTE technique was applied to generate 
synthetic data for the minority class. This study compares the 
performance of models trained with and without SMOTE. The 
newly generated synthetic samples, as depicted in Equation 1 
[15], were produced using the following formula (1). 

 
  	𝑧 = 𝑥 + 𝜆. (𝑦 − 𝑥)         (1) 
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2.4. Feature Selection (SFS) 

 Sequential feature selection (SFS) is a method for selecting 
the most relevant features from a dataset. SFS builds models 
incrementally, starting with no features and adding one feature 
at a time that contributes the most to improving classification 
performance on the training data. This process is repeated 
until an optimal number of features is reached [11], [13], [16]. 
Feature selection is a process of selecting a subset of features 
from a larger set of features in a dataset. The primary 
objectives of feature selection are to reduce feature 
redundancy to minimize noise in the model, prevent 
overfitting, enhance model performance and interpretability, 
and identify the most influential features for model 
performance. In this study, we employed sequential feature 
selection. 

2.5. Split Data 

 In the data splitting stage, the dataset was divided into two 
parts: training data and testing data. For k-fold cross-
validation, the dataset was further divided into three parts: 
training data, testing data, and validation data. The training 
and testing data splits used were 90:10, 80:20, 70:30, and 
60:40. Additionally, k-fold cross-validation was performed 
with k values of 3, 5, 7, and 10. 

2.6. Initialization of Basic Model 

 This study, two algorithm models were used random forest 
and extra trees. 

2.6.1 Random Forest 
 Random forest is a supervised learning algorithm that 
constructs an ensemble of decision trees to make more 
accurate predictions. In random forest, each decision tree 
produces a prediction, but the final prediction of the model is 
determined by a majority vote among all decision trees. The 
formula used in the prediction process using the random forest 
method can be seen in Equation 2 [13], [17]. 
 
      𝐼(𝑥) arg𝑚𝑎𝑥!(∑ 𝐼"!($)&!𝐼"!($)&!

'
(&) )        (2) 

2.6.2 Extra Trees 

 The extra trees classifier is an extension of the Random For-
est algorithm with some variations. Similar to random forest, 
all base learners are decision trees. However, there are some 
differences in how the data is split. Extra trees classifier splits 
the data randomly without replacement, unlike random forest 
which uses the best split approach. [18], [19]. The formula for 
building a tree in extra trees [20]. The first one, calculating 
entropy, can be seen in equation 3. 

 
     𝐸𝑛𝑡𝑟𝑜𝑝𝑦	(𝑆1) = 	−∑ 𝑝* 	𝑙𝑜𝑔+		!)

*&) 𝑝*        (3) 
 
Subsequently, the calculation of information gain can be seen 
in equation 4. 
 

    𝐺𝑎𝑖𝑛	(𝑆1, 𝐴) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆1) −	∑ |"#!|
|"#|$%	'()*+,	(.) 	𝐸𝑛𝑡𝑟𝑜𝑝𝑦	(𝑆10) (4) 

2.7. Hyperparameter Optimization (Gridsearch) 

 Gridsearch is a technique for finding the optimal 
combination of hyperparameters using a specified range, 
upper bound, and number of steps. Gridsearch systematically 
explores all possible combinations within the defined grid, 
evaluating each to determine the best performing 
configuration [21]. At this stage, Gridsearch was employed to 
optimize the hyperparameters of both the random forest and 
extra trees models, aiming to enhance model performance. 
Cross-validation was utilized to evaluate the models' 
performance. 

2.8. Training Model 

 At this stage, training was conducted on each machine 
learning model. These models were categorized into four 
groups: models with SMOTE and SFS, models with SFS only, 
and both groups before and after hyperparameter optimization 
using gridsearch. 

2.9. Evaluating Model 

 The model evaluation process involves measuring the 
performance of a machine learning model by applying 
SMOTE and SFS feature selection, as well as a machine 
learning model with SFS feature selection without applying 
SMOTE before gridsearch optimization and a machine 
learning model that applies SMOTE and SFS feature selection, 
and a machine learning model with SFS feature selection 
without applying SMOTE after gridsearch optimization. Then, 
it is evaluated using a confusion matrix by calculating recall 
or sensitivity, specificity, precision, accuracy, F1-score, and 
ROC-AUC. 

3.1.1 Recall or Sensitivity 

Recall or sensitivity is a metric used to assess a model's ability 
to correctly identify positive cases. The formula for recall or 
sensitivity can be found in Equation 5 [22], [23], [24]. 

 
𝑅𝑒𝑐𝑎𝑙𝑙 = 	𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 	 (-.)

(-./0')
        (5) 
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3.1.2 Specificity 

Specificity is a metric used to assess a model's ability to 
correctly identify negative cases. The formula for specificity 
can be found in Equation 6 [22]. 

  𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 	 (-')
(-'/0.)

      (6) 

3.1.3 Precision 

Precision is a metric used to assess a model's ability to cor-
rectly predict positive cases among all predicted positive cases. 
The formula for precision can be found in Equation 7 [22], 
[24]. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	 (-.)
(-./0.)

    (7) 

3.1.4 Accuracy 
Accuracy is a metric used to evaluate how well a classifier 
predicts the true condition by considering both correct and 
incorrect predictions. The formula for accuracy can be found 
in Equation 8 [22], [24]. 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	 (-./-')
(-./-'/0'/0.)

     (8) 

3.1.5 F1-Score 
 The F1-score is the harmonic mean of precision and recall. 
The formula for the F1-score can be found in Equation 9 [22], 
[24], [25]. 
 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 	 +∗(23!455∗623!*7*8()
(23!455/623!*7*8()

    (9) 

3.1.6 ROC AUC 
 ROC-AUC is used to evaluate an algorithm's ability to 
generalize to new data. The formulas for ROC-AUC can be 
found in Equations 10 and 11. 

𝑇𝑃𝑅 =	 (-.)
(-./0')

    (10) 

 
𝐹𝑃𝑅 =	 (0.)

(-'/0.)
     (11) 

3. Results and Analysis 

3.1. Result Data Preprocessing 

 To facilitate data management and analysis, several 
libraries were employed in this study: pandas, matplotlib, and 
NumPy. Pandas was used for data analysis, manipulation, and 
cleaning. Matplotlib was utilized for data visualization. 
NumPy was employed for performing mathematical 
operations on arrays. 

3.1.1 Feature Removal 
Feature removal is conducted for unused features. The 

drop() method is used to remove features in the data frame that 
are not relevant to this research. The study focuses on 
symptom data for managing hepatitis disease data. Features 
that are removed include medical record number, admission 
date, discharge date, date of birth, primary ICD 10 diagnosis 
code, secondary ICD 10 diagnosis code, and laboratory results. 
Additionally, other removed features such as chief complaint, 
current medical history, and past medical history are excluded 
because these features have been separated based on the data 
they contain. After feature removal, the number of features 
becomes 68. 

3.1.2 Duplicated Data Checking 
 Duplicate data checking is the process of identifying and 
removing identical rows or entries from the dataset. Duplicate 
data checking is performed using the duplicated() method, and 
the sum() method is used to count the total number of rows 
identified as duplicates. In this study, there are no duplicate 
data. 

3.1.3 Missing Value Checking 
 Missing value checking is conducted to identify where data 
is missing or has null values. Missing value checking is 
performed using the isnull() method, and the sum() method is 
used to count the number of missing values per column in the 
dataset. 

3.1.4 Data Analysis and Visualization 
 Before handling missing values, data analysis and 
visualization are performed to understand the characteristics 
of data distribution, whether the data is symmetric or 
asymmetric. This information is used to address the missing 
value issues in the data appropriately. From the analysis and 
visualization results, it is found that the average data is 
asymmetric. 

3.1.5 Overcoming missing value 
 Handling or filling missing values in each column is done 
using the mode value of each column. Since the results of the 
column analysis and visualization show that the average data 
is asymmetric, using the mode method mode() to address 
missing values can be the best choice. If missing values are 
handled by deleting columns, it can lead to the loss of valuable 
information that might be present in the deleted columns 
(features), as well as the loss of important columns (features), 
which can decrease the model's performance. Therefore, 
addressing missing values using the mode value is the most 
effective way because it retains all original features in the 
dataset and can also improve model performance, allowing the 
model to learn from as much information as possible. 
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3.1.6 Data Encoding 
 Data encoding is performed using the one-hot encoding 
method on categorical columns, except for the diagnosis 
column. The diagnosis column is excluded because it is the 
target variable or the variable to be predicted in the analysis or 
model to be built. After performing one-hot encoding, the 
number of features increased to 95. This occurs because, in the 
one-hot encoding process, each categorical feature is 
transformed into a new independent column (feature) in 
binary form (0 or 1). 

3.1.7 Data Transformation 
 Data transformation on the 'Diagnosis' column is used to 
convert categorical values such as 'Non Hepatitis,' 'Hepatitis 
A,' and 'Hepatitis B' into numerical representations ('Non 
Hepatitis': 0, 'Hepatitis A': 1, 'Hepatitis B': 2) that are easier 
for machine learning algorithms to understand. By performing 
this transformation, the data becomes more ready to be used 
in model development. 

3.1.8 Outlier Checking 
 Outlier checking is used to identify values that are 
significantly different from the majority of the data in the 
dataset to maintain data quality and improve the performance 
of the machine learning model. Outliers can affect descriptive 
statistics and cause overfitting. This outlier checking uses the 
quantile() method because it is simple, easy to compute, 
ignores the influence of outliers in the calculations, is effective 
in identifying extreme values, is flexible in determining 
outlier thresholds, and is suitable for various types of diverse 
data. In this study, no handling of outlier data was performed 
because these outlier values represent legitimate or authentic 
values in the dataset. Removing or adjusting these values 
could eliminate important information relevant to the 
characteristics being studied. 

3.1.9 Dataset Division 
 The dataset is divided into 'x' (features) which includes all 
features except the 'Diagnosis' feature, and 'y' (target) which 
contains only the 'Diagnosis' feature. With this division, the 
number of features becomes 94. This dataset splitting is 
crucial for preparing the data before the machine learning 
model training process. By separating the dataset into 'x' and 
'y,' it allows for more effective data management and analysis 
in the context of model development and evaluation. 

3.1.10  Data Standardization 
 Data standardization is the process of transforming 
numerical data to adjust its distribution so that it has a mean 
of zero and a variance of one. In data processing for machine 
learning, data standardization is performed to ensure that all 
features have a similar scale. In this study, the StandardScaler() 
method imported from the scikit-learn library is used for 

standardization. 

3.2. Result Balancing Data 

SMOTE was employed to address the class imbalance 
issue in the dataset, as the number of samples in each class 
was disproportionate: 65 for Hepatitis A, 51 for Hepatitis B, 
and 40 for non-hepatitis. SMOTE helped to augment the 
minority class by creating new synthetic samples. Data 
balancing was achieved by importing the 
imblearn.over_sampling library. 

3.3. Result Feature Selection 

In this study, feature selection is performed using 
Sequential Feature Selection (SFS) because, despite the 
removal of unused features during the initial data 
preprocessing stage, the number of features is still large, at 94 
features. Therefore, SFS is used to select or identify the most 
important or relevant features. Feature selection is done by 
importing SequentialFeatureSelection and setting k-
features=31 for data with SMOTE applied, and k-features=32 
for data without SMOTE. The choice of k-features values is 
determined by applying feature importance and threshold-
based feature search. 

3.4. Result Split Data 

The dataset was partitioned using both train-test split and 
k-fold cross-validation. For the train-test split, various ratios 
were explored, including 60:40, 70:30, 80:20, and 90:10. 
Additionally, k-fold cross-validation was conducted with k 
values of 3, 5, 7, and 10. Table 4.4 presents the results of these 
data partitioning methods for both the SMOTE-oversampled 
and original datasets. The results of data partitioning, both 
with and without the application of SMOTE, can be found in 
Table 1. 

Table 1. Dataset split ratio 

Split 

Data -

SMOTE 

Data 

Train

ing 

Data 

Testi

ng 

Data 

Valid

ation 

Split 

Data 

Tanpa 

SMOTE 

Data 

Train

ing 

Data 

Testing 

Data 

Valid

ation 

60:40 117 78 - 60:40 93 62 - 

70:30 136 59 - 70:30 108 47 - 

80:20 156 39 - 80:20 124 31 - 

90:10 175 20 - 90:10 139 16 - 

K=3 117 45 13 K=3 93 51 11 

K=5 140 39 16 K=5 111 31 13 

K=7 151 27 17 K=7 119 22 14 

K=10 158 19 18 K=10 126 15 14 
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3.5. Result Initialization of Basic Model 

The baseline models in this study were initialized using 
two algorithms: random forest and extra trees. Several 
approaches were explored in this initialization phase. These 
include random forest and extra trees models with SMOTE 
and SFS feature selection, and random forest and extra trees 
models with SFS feature selection but without SMOTE. Both 
random forest and extra trees algorithms were imported from 
the scikit-learn ensemble library. 

3.6. Result Hyperparameter Optimization 

Hyperparameter optimization using gridsearch was 
conducted on both random forest and extra trees algorithms. 
By experimenting with predefined combinations of 
hyperparameters, the optimal configuration for each model 
was determined to maximize performance. Gridsearch 
optimization was applied to models with and without SMOTE 
and SFS feature selection. The GridSearchCV function from 
the scikit-learn model_selection library was utilized for this 
purpose. The specific hyperparameters and their 
corresponding ranges are presented in Table 2. 

 

Table 2. Hyperparameter optimization 

Hyperparameter 
Algorithm Hyperparameter Rentang Nilai 
Random 
Forest 

N_estimators 100,150 
Max_features Sqrt, log2 
Max_depth 10, 15 
Min_samples_split 2, 4 
Min_samples_leaf 1, 2 
Bootstrap True, False 
Criterion Gini, Entropy 

Extra Tree N_estimator 100, 150 
Max_depth 10, 15 
Min_samples_split 2, 5 
Bootstrap False 

3.7. Result Training Model 

 In the model training stage, all the models that have been 
created will be trained using the pre-determined training data. 
Each model will use the training data to identify and learn 
patterns and relationships within the dataset. The goal at this 
stage is to prepare and train the models so that they can make 
accurate decisions on new or test data. 
 

3.8. Result Evaluating Model 

Machine learning models with SMOTE and Sequential 
Feature Selection (SFS) before and after GridSearch tuning 
show that GridSearch tuning significantly improves 
performance, with the highest performance achieved by the 
Random Forest model tuned with GridSearch at an 80:20 ratio, 
resulting in an accuracy of 94.87%, recall of 95.69%, 
precision of 93.33%, F1-score of 94.07%, specificity of 
97.97%, and ROC AUC of 99.13%. This demonstrates that 
SMOTE and SFS help address data imbalance and select the 
most relevant features. Thus, the use of GridSearch tuning, 
SMOTE, and SFS can optimize model performance.  

Handling missing values with the mode produces the best 
model performance compared to handling missing values by 
deletion. For a more comprehensive evaluation of the model, 
please refer to Table 3 for comparison of machine learning 
algorithms with SMOTE and SFS feature slection before and 
after tuning gridsearch with mode value, Table 4 to 
comparison of machine algorithms with SFS feature selection 
without SMOTE before and after tuning gridSearch with 
mode values, Table 5 to comparison of machine learnibg 
algorithms with SMOTE and SFS feature selection before and 
after gridsearch tuning with missing value removal, and Table 
6 to comparison of machine learning algorithms with SFS 
feature selection without SMOTE before and after gridsearch 
tuning with missing value removal. 
 

Table 3. Comparison of ML Algorithms with SMOTE and SFS Be-

fore and After Tuning Gridsearch with Mode Value 

with SMOTE and SFS Before 

Model RF ET RF 
Tuning 

ET 
Tuning 

Accuracy 87.17 84.61 94.87 87.17 
Recall 89.02 85.00 95.69 87.22 
Precision 86.80 83.09 93.33 85.49 
F1-Score 86.12 83.24 94.07 85.55 
Specificity 94.80 93.46 97.97 94.85 
ROC AUC 98.34 98.05 99.13 98.01 

After Tuning Gridsearch With Mode Value (K=7) 

Model RF ET RF 
Tuning 

ET 
Tuning 

Accuracy 88.69 90.26 90.24 91.79 
Recall 89.27 91.04 91.31 92.82 
Precision 88.92 90.33 89.97 91.53 
F1-Score 87.86 89.54 89.66 91.18 
Specificity 94.50 96.06 95.29 96.06 
ROC AUC 96.94 98.03 97.45 98.20 
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Table 4. Comparison of ML with SFS without SMOTE Before and 

After Tuning Gridsearch with Mode Values 

with SFS without SMOTE Before 

Model RF ET RF 
Tuning 

ET 
Tuning 

Accuracy 77.41 77.41 77.41 80.64 
Recall 78.90 78.90 78.90 81.28 
Precision 78.15 78.91 78.15 80.93 
F1-Score 77.65 77.45 77.65 80.21 
Specificity 90.10 90.74 90.10 91.76 
ROC AUC 92.52 92.38 93.16 93.40 

After Tuning Gridsearch with Mode Values (K=7) 

Model RF ET RF 
Tuning 

ET 
Tuning 

Accuracy 85.77 83.17 86.42 86.42 
Recall 86.13 83.46 86.81 86.18 
Precision 86.21 84.09 86.91 87.08 
F1-Score 85.05 82.68 85.86 85.66 
Specificity 92.73 92.93 93.07 92.93 
ROC AUC 94.37 94.45 94.74 94.50 

 

Table 5. Comparison of ML Algorithms with SMOTE and SFS Be-

fore and After GridSearch Tuning with Missing Value Removal 

Model RF ET RF 
Tuning 

ET 
Tuning 

Accuracy 87.17 84.61 89.74 84.61 
Recall 85.41 83.33 87.50 83.33 
Precision 84.96 82.74 87.74 82.74 
F1-Score 84.66 82.04 87.36 82.04 
Specificity 94.49 93.62 95.41 93.62 
ROC AUC 96.16 93.61 95.44 94.89 

 

Table 6. Comparison of ML Algorithms with SFS without SMOTE 

Before and After GridSearch Tuning with Missing Value Removal 

Model RF ET RF 
Tuning 

ET 
Tuning 

Accuracy 77.41 77.41 77.41 80.64 
Recall 77.57 75.33 75.79 78.17 
Precision 78.57 76.66 75.76 80.65 
F1-Score 76.53 75.87 75.38 78.88 
Specificity 90.74 89.70 90.43 90.88 
ROC AUC 95.12 92.31 95.01 95.13 

 

4. Conclusion 

The following are the conclusions of the research re-
sult: 
1. The performance results of both algorithms, extra 

trees and random forest, with SMOTE and SFS be-
fore gridsearch optimization showed good perfor-
mance, but the extra trees algorithm with SMOTE 
and SFS performed slightly better, with the best per-
formance at k=7. After gridsearch optimization, the 
performance of both random forest and extra trees al-
gorithms improved. Overall, the optimized random 
forest model with SMOTE and SFS achieved the best 
performance at an 80:20 ratio. This indicates that the 
gridsearch tuning method with SMOTE and SFS is 
very effective in improving model performance in 
handling hepatitis disease symptom data. 

2. The performance results of both machine learning 
models with SFS without SMOTE before and after 
gridsearch tuning show that gridsearch tuning can 
improve performance results at various data ratios, 
although in some cases there is a decrease or stagna-
tion in performance after gridsearch tuning. The best 
results before and after gridsearch optimization were 
found in both models at a 90:10 ratio. Overall, with-
out SMOTE, the performance is quite good, but not 
as good as with SMOTE. 
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