
Journal of Research in Artificial Intelligence for Systems and Applications (RAISA)
2025, Vol. 01, No. 01, E-ISSN: XXXX-XXXX

*Corresponding author: Nelly Oktavia Adiwijaya

Email addresses:

tasyaoktaviana5885@gmail.com (Tasya Oktaviana Dwi Cahyanti), nelly.oa@unej.ac.id (Nelly Oktavia Adiwijaya), gamawisnuf@unej.ac.id
(Gama Wisnu Fajarianto)

Received: 30 12 2024; Accepted: 03 01 2025; Published: 15 01 2025

Original Research

Comparative Analysis of Machine Learning Algorithms with
Sequential Feature Selection and Gridsearch Optimization
(Hepatitis Case Study)

Tasya Oktaviana Dwi Cahyanti1, Nelly Oktavia Adiwijaya1,*, Gama Wisnu
Fajarianto1

1Departement of Informatics, Faculty of Computer Science, University of Jember

Abstract
Hepatitis is a dangerous disease that can cause liver damage. It is often difficult to diagnose because the symptoms of different
categories of hepatitis are hard to distinguish. Hepatitis that is not promptly and properly managed, especially in individuals with
chronic liver conditions, can lead to complications. This study aims to improve model performance in hepatitis diagnosis using
medical data from hepatitis A and B patients at Citra Husada Hospital in Jember. The results show that the method of gridsearch
tuning with SMOTE and SFS is very effective in enhancing the performance of the random forest and extra tree algorithms in
managing hepatitis symptom data. The best performance was achieved by the random forest algorithm with an 80:20 data ratio,
reaching the highest accuracy of 94.87%, recall of 95.96%, precision of 93.33%, f1-score of 94.07%, specificity of 97.97%, and
ROC AUC of 99.13%.

Keywords
Hepatitis, Random Forest, Extra Tree; SFS, GridSearch, SMOTE

1. Introduction
Hepatitis is a dangerous disease caused by liver injury,

characterized by inflammation of the liver and damage to
hepatocytes. Inflammation can lead to the death of liver cells
and affect liver function. Hepatitis is caused by a viral infec-
tion, and these viruses are categorized into hepatitis A, hepa-
titis B, hepatitis C, hepatitis D, hepatitis E, and hepatitis G [1],
[2], [3]. According to data from the Jember Health Office,
cases of hepatitis A in Jember increased to 217 cases at the
end of 2019. Meanwhile, hepatitis B cases, based on data from
the Ministry of Health, are predominantly transmitted from
mother to child in Indonesia. East Java was recorded as the
province with the highest national cases of pregnant women

testing positive for hepatitis B, with a total of 8,269 cases in
2022.

The clinical symptoms of different types of hepatitis cannot
be distinguished from one another. The most common symp-
toms include fever, jaundice (yellowing of the eyes and skin),
weakness, fatigue, nausea, vomiting, abdominal pain, arthral-
gia (joint pain), myalgia (muscle pain), diarrhea, anorexia
(eating disorder or loss of appetite), and dark-colored urine.
Not everyone infected will experience all of these symptoms
[4], [5]. This can complicate diagnosis and requires further ex-
amination. Hepatitis that is not promptly and properly treated,
especially in individuals with chronic liver disorders, can lead

mailto:gamawisnuf@unej.ac.id
https://hi.fisip.unej.ac.id/

Journal of Research in Artificial Intelligence for Systems and Applications (RAISA) https://journal.unej.ac.id/RAISA

12

to complications such as liver failure, cirrhosis, fulminant hep-
atitis, or liver cancer (hepatocellular carcinoma) [6]. However,
diagnosing hepatitis involves the clinical interpretation of var-
ious symptoms, risk factors, laboratory tests, and vital signs,
which is a challenging task. This task becomes even more
complex if the available data is unclear. This can slow down
the decision-making process for doctors, even those with ex-
tensive experience. Human diagnosis is not entirely accurate
as humans are prone to errors [1].

Therefore, to process diverse data, avoid clinical bias, and
reduce evaluation time, this study proposes the application of
machine learning. This study will process symptom data using
machine learning for hepatitis A and hepatitis B. Hepatitis A
is an inflammation of the liver caused by the hepatitis A virus
(HAV) [7]. Hepatitis B is an infectious disease caused by liver
inflammation due to the hepatitis B virus [8]. Machine learn-
ing is a branch of artificial intelligence that enables systems to
learn from experience, allowing them to make predictions or
decisions without being explicitly programmed [9]. Machine
learning is divided into four categories: supervised learning,
semi-supervised learning, unsupervised learning, and rein-
forcement learning [10]. To optimize model performance, this
study uses sequential feature selection and gridsearch, with
the implementation of SMOTE for data balancing. Sequential
feature selection allows researchers to choose the most rele-
vant and significant features in processing hepatitis symptom
data [11]. Additionally, by using gridsearch, researchers can
find the best parameter combinations for the Random Forest
and Extra Tree algorithms [12]. The study will compare the
Extra Tree and Random Forest algorithms by applying se-
quential feature selection before and after gridsearch optimi-
zation, with and without SMOTE. This comparison will help
in selecting the most suitable model for processing hepatitis
symptom data and ensuring optimal performance in machine
learning.

This research aims to analyze and evaluate the performance
comparison of random forest and extra tree machine learning
optimization models using sequential feature selection and
gridsearch with the application of SMOTE to determine the
most suitable model for managing hepatitis disease symptom
data to obtain high accuracy. The technique used is data pro-
cessing using clinical data. This research also aims to help in
managing hepatitis disease symptom data to detect and diag-
nose hepatitis disease more efficiently by applying machine
learning models.

2. Research Method (14 Pt)

This research aims to compare and evaluate the per-
formance of optimized random forest and extra trees
models using sequential feature selection and gridsearch,
along with applying SMOTE to address data imbalance.
The objective is to find the most suitable model for ana-
lyzing hepatitis symptom data to achieve high accuracy.

Furthermore, this research is expected to aid in the early
detection and more efficient diagnosis of hepatitis using
clinical data. A flowchart illustrating the proposed meth-
odology is presented in Figure 1.

2.1. Data Description

The data used in this study were medical records of hepatitis
A and hepatitis B patients obtained from Citra Husada Jember
Hospital. The dataset consists of 130 features and 1 target col-
umn used to determine whether an individual is infected with
hepatitis A or hepatitis B, or neither. There are 156 data points
in total, with 65 data points from patients infected with hepa-
titis A, 51 data points from patients infected with hepatitis B,
and 40 data points from uninfected patients.

Figure 1. Flowchart illustrating the proposed methodology

2.2 Data Preprocessing

Data preprocessing is the initial phase in data processing. It
involves transforming raw data, which is often inconsistent
and in an unsuitable format, into usable and processable data.
In this research, the data preprocessing steps include feature
(column) removal, duplicate data checking, duplicate data re-
moval, missing value checking, data analysis and visualiza-
tion, missing value handling, data encoding, data transfor-
mation, outlier detection, dataset splitting, and data standard-
ization.

2.3 Balancing Data (SMOTE)

SMOTE is a technique designed to address class imbalance
in datasets. It generates synthetic samples for the minority
class by interpolating feature values between an instance and
its nearest neighbours. Data balancing is a process employed
to address imbalanced datasets. Given the imbalance in the
distribution of hepatitis A, hepatitis B, and non-hepatitis cases
in our dataset, the SMOTE technique was applied to generate
synthetic data for the minority class. This study compares the
performance of models trained with and without SMOTE. The
newly generated synthetic samples, as depicted in Equation 1
[15], were produced using the following formula (1).

 	𝑧 = 𝑥 + 𝜆. (𝑦 − 𝑥) (1)

Journal of Research in Artificial Intelligence for Systems and Applications (RAISA) https://journal.unej.ac.id/RAISA

13

2.4. Feature Selection (SFS)

 Sequential feature selection (SFS) is a method for selecting
the most relevant features from a dataset. SFS builds models
incrementally, starting with no features and adding one feature
at a time that contributes the most to improving classification
performance on the training data. This process is repeated
until an optimal number of features is reached [11], [13], [16].
Feature selection is a process of selecting a subset of features
from a larger set of features in a dataset. The primary
objectives of feature selection are to reduce feature
redundancy to minimize noise in the model, prevent
overfitting, enhance model performance and interpretability,
and identify the most influential features for model
performance. In this study, we employed sequential feature
selection.

2.5. Split Data

 In the data splitting stage, the dataset was divided into two
parts: training data and testing data. For k-fold cross-
validation, the dataset was further divided into three parts:
training data, testing data, and validation data. The training
and testing data splits used were 90:10, 80:20, 70:30, and
60:40. Additionally, k-fold cross-validation was performed
with k values of 3, 5, 7, and 10.

2.6. Initialization of Basic Model

 This study, two algorithm models were used random forest
and extra trees.

2.6.1 Random Forest
 Random forest is a supervised learning algorithm that
constructs an ensemble of decision trees to make more
accurate predictions. In random forest, each decision tree
produces a prediction, but the final prediction of the model is
determined by a majority vote among all decision trees. The
formula used in the prediction process using the random forest
method can be seen in Equation 2 [13], [17].

 𝐼(𝑥) arg𝑚𝑎𝑥!(∑ 𝐼"!($)&!𝐼"!($)&!

'
(&)) (2)

2.6.2 Extra Trees

 The extra trees classifier is an extension of the Random For-
est algorithm with some variations. Similar to random forest,
all base learners are decision trees. However, there are some
differences in how the data is split. Extra trees classifier splits
the data randomly without replacement, unlike random forest
which uses the best split approach. [18], [19]. The formula for
building a tree in extra trees [20]. The first one, calculating
entropy, can be seen in equation 3.

 𝐸𝑛𝑡𝑟𝑜𝑝𝑦	(𝑆1) = 	−∑ 𝑝* 	𝑙𝑜𝑔+		!)

&) 𝑝 (3)

Subsequently, the calculation of information gain can be seen
in equation 4.

 𝐺𝑎𝑖𝑛	(𝑆1, 𝐴) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆1) −	∑ |"#!|
|"#|$%	'()*+,	(.) 	𝐸𝑛𝑡𝑟𝑜𝑝𝑦	(𝑆10) (4)

2.7. Hyperparameter Optimization (Gridsearch)

 Gridsearch is a technique for finding the optimal
combination of hyperparameters using a specified range,
upper bound, and number of steps. Gridsearch systematically
explores all possible combinations within the defined grid,
evaluating each to determine the best performing
configuration [21]. At this stage, Gridsearch was employed to
optimize the hyperparameters of both the random forest and
extra trees models, aiming to enhance model performance.
Cross-validation was utilized to evaluate the models'
performance.

2.8. Training Model

 At this stage, training was conducted on each machine
learning model. These models were categorized into four
groups: models with SMOTE and SFS, models with SFS only,
and both groups before and after hyperparameter optimization
using gridsearch.

2.9. Evaluating Model

 The model evaluation process involves measuring the
performance of a machine learning model by applying
SMOTE and SFS feature selection, as well as a machine
learning model with SFS feature selection without applying
SMOTE before gridsearch optimization and a machine
learning model that applies SMOTE and SFS feature selection,
and a machine learning model with SFS feature selection
without applying SMOTE after gridsearch optimization. Then,
it is evaluated using a confusion matrix by calculating recall
or sensitivity, specificity, precision, accuracy, F1-score, and
ROC-AUC.

3.1.1 Recall or Sensitivity

Recall or sensitivity is a metric used to assess a model's ability
to correctly identify positive cases. The formula for recall or
sensitivity can be found in Equation 5 [22], [23], [24].

𝑅𝑒𝑐𝑎𝑙𝑙 = 	𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 	 (-.)

(-./0')
 (5)

Journal of Research in Artificial Intelligence for Systems and Applications (RAISA) https://journal.unej.ac.id/RAISA

14

3.1.2 Specificity

Specificity is a metric used to assess a model's ability to
correctly identify negative cases. The formula for specificity
can be found in Equation 6 [22].

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 	 (-')
(-'/0.)

 (6)

3.1.3 Precision

Precision is a metric used to assess a model's ability to cor-
rectly predict positive cases among all predicted positive cases.
The formula for precision can be found in Equation 7 [22],
[24].

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	 (-.)
(-./0.)

 (7)

3.1.4 Accuracy
Accuracy is a metric used to evaluate how well a classifier
predicts the true condition by considering both correct and
incorrect predictions. The formula for accuracy can be found
in Equation 8 [22], [24].

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	 (-./-')
(-./-'/0'/0.)

 (8)

3.1.5 F1-Score
 The F1-score is the harmonic mean of precision and recall.
The formula for the F1-score can be found in Equation 9 [22],
[24], [25].

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 	 +∗(23!455∗623!*7*8()
(23!455/623!*7*8()

 (9)

3.1.6 ROC AUC
 ROC-AUC is used to evaluate an algorithm's ability to
generalize to new data. The formulas for ROC-AUC can be
found in Equations 10 and 11.

𝑇𝑃𝑅 =	 (-.)
(-./0')

 (10)

𝐹𝑃𝑅 =	 (0.)

(-'/0.)
 (11)

3. Results and Analysis

3.1. Result Data Preprocessing

 To facilitate data management and analysis, several
libraries were employed in this study: pandas, matplotlib, and
NumPy. Pandas was used for data analysis, manipulation, and
cleaning. Matplotlib was utilized for data visualization.
NumPy was employed for performing mathematical
operations on arrays.

3.1.1 Feature Removal
Feature removal is conducted for unused features. The

drop() method is used to remove features in the data frame that
are not relevant to this research. The study focuses on
symptom data for managing hepatitis disease data. Features
that are removed include medical record number, admission
date, discharge date, date of birth, primary ICD 10 diagnosis
code, secondary ICD 10 diagnosis code, and laboratory results.
Additionally, other removed features such as chief complaint,
current medical history, and past medical history are excluded
because these features have been separated based on the data
they contain. After feature removal, the number of features
becomes 68.

3.1.2 Duplicated Data Checking
 Duplicate data checking is the process of identifying and
removing identical rows or entries from the dataset. Duplicate
data checking is performed using the duplicated() method, and
the sum() method is used to count the total number of rows
identified as duplicates. In this study, there are no duplicate
data.

3.1.3 Missing Value Checking
 Missing value checking is conducted to identify where data
is missing or has null values. Missing value checking is
performed using the isnull() method, and the sum() method is
used to count the number of missing values per column in the
dataset.

3.1.4 Data Analysis and Visualization
 Before handling missing values, data analysis and
visualization are performed to understand the characteristics
of data distribution, whether the data is symmetric or
asymmetric. This information is used to address the missing
value issues in the data appropriately. From the analysis and
visualization results, it is found that the average data is
asymmetric.

3.1.5 Overcoming missing value
 Handling or filling missing values in each column is done
using the mode value of each column. Since the results of the
column analysis and visualization show that the average data
is asymmetric, using the mode method mode() to address
missing values can be the best choice. If missing values are
handled by deleting columns, it can lead to the loss of valuable
information that might be present in the deleted columns
(features), as well as the loss of important columns (features),
which can decrease the model's performance. Therefore,
addressing missing values using the mode value is the most
effective way because it retains all original features in the
dataset and can also improve model performance, allowing the
model to learn from as much information as possible.

Journal of Research in Artificial Intelligence for Systems and Applications (RAISA) https://journal.unej.ac.id/RAISA

15

3.1.6 Data Encoding
 Data encoding is performed using the one-hot encoding
method on categorical columns, except for the diagnosis
column. The diagnosis column is excluded because it is the
target variable or the variable to be predicted in the analysis or
model to be built. After performing one-hot encoding, the
number of features increased to 95. This occurs because, in the
one-hot encoding process, each categorical feature is
transformed into a new independent column (feature) in
binary form (0 or 1).

3.1.7 Data Transformation
 Data transformation on the 'Diagnosis' column is used to
convert categorical values such as 'Non Hepatitis,' 'Hepatitis
A,' and 'Hepatitis B' into numerical representations ('Non
Hepatitis': 0, 'Hepatitis A': 1, 'Hepatitis B': 2) that are easier
for machine learning algorithms to understand. By performing
this transformation, the data becomes more ready to be used
in model development.

3.1.8 Outlier Checking
 Outlier checking is used to identify values that are
significantly different from the majority of the data in the
dataset to maintain data quality and improve the performance
of the machine learning model. Outliers can affect descriptive
statistics and cause overfitting. This outlier checking uses the
quantile() method because it is simple, easy to compute,
ignores the influence of outliers in the calculations, is effective
in identifying extreme values, is flexible in determining
outlier thresholds, and is suitable for various types of diverse
data. In this study, no handling of outlier data was performed
because these outlier values represent legitimate or authentic
values in the dataset. Removing or adjusting these values
could eliminate important information relevant to the
characteristics being studied.

3.1.9 Dataset Division
 The dataset is divided into 'x' (features) which includes all
features except the 'Diagnosis' feature, and 'y' (target) which
contains only the 'Diagnosis' feature. With this division, the
number of features becomes 94. This dataset splitting is
crucial for preparing the data before the machine learning
model training process. By separating the dataset into 'x' and
'y,' it allows for more effective data management and analysis
in the context of model development and evaluation.

3.1.10 Data Standardization
 Data standardization is the process of transforming
numerical data to adjust its distribution so that it has a mean
of zero and a variance of one. In data processing for machine
learning, data standardization is performed to ensure that all
features have a similar scale. In this study, the StandardScaler()
method imported from the scikit-learn library is used for

standardization.

3.2. Result Balancing Data

SMOTE was employed to address the class imbalance
issue in the dataset, as the number of samples in each class
was disproportionate: 65 for Hepatitis A, 51 for Hepatitis B,
and 40 for non-hepatitis. SMOTE helped to augment the
minority class by creating new synthetic samples. Data
balancing was achieved by importing the
imblearn.over_sampling library.

3.3. Result Feature Selection

In this study, feature selection is performed using
Sequential Feature Selection (SFS) because, despite the
removal of unused features during the initial data
preprocessing stage, the number of features is still large, at 94
features. Therefore, SFS is used to select or identify the most
important or relevant features. Feature selection is done by
importing SequentialFeatureSelection and setting k-
features=31 for data with SMOTE applied, and k-features=32
for data without SMOTE. The choice of k-features values is
determined by applying feature importance and threshold-
based feature search.

3.4. Result Split Data

The dataset was partitioned using both train-test split and
k-fold cross-validation. For the train-test split, various ratios
were explored, including 60:40, 70:30, 80:20, and 90:10.
Additionally, k-fold cross-validation was conducted with k
values of 3, 5, 7, and 10. Table 4.4 presents the results of these
data partitioning methods for both the SMOTE-oversampled
and original datasets. The results of data partitioning, both
with and without the application of SMOTE, can be found in
Table 1.

Table 1. Dataset split ratio

Split

Data -

SMOTE

Data

Train

ing

Data

Testi

ng

Data

Valid

ation

Split

Data

Tanpa

SMOTE

Data

Train

ing

Data

Testing

Data

Valid

ation

60:40 117 78 - 60:40 93 62 -

70:30 136 59 - 70:30 108 47 -

80:20 156 39 - 80:20 124 31 -

90:10 175 20 - 90:10 139 16 -

K=3 117 45 13 K=3 93 51 11

K=5 140 39 16 K=5 111 31 13

K=7 151 27 17 K=7 119 22 14

K=10 158 19 18 K=10 126 15 14

Journal of Research in Artificial Intelligence for Systems and Applications (RAISA) https://journal.unej.ac.id/RAISA

16

3.5. Result Initialization of Basic Model

The baseline models in this study were initialized using
two algorithms: random forest and extra trees. Several
approaches were explored in this initialization phase. These
include random forest and extra trees models with SMOTE
and SFS feature selection, and random forest and extra trees
models with SFS feature selection but without SMOTE. Both
random forest and extra trees algorithms were imported from
the scikit-learn ensemble library.

3.6. Result Hyperparameter Optimization

Hyperparameter optimization using gridsearch was
conducted on both random forest and extra trees algorithms.
By experimenting with predefined combinations of
hyperparameters, the optimal configuration for each model
was determined to maximize performance. Gridsearch
optimization was applied to models with and without SMOTE
and SFS feature selection. The GridSearchCV function from
the scikit-learn model_selection library was utilized for this
purpose. The specific hyperparameters and their
corresponding ranges are presented in Table 2.

Table 2. Hyperparameter optimization

Hyperparameter
Algorithm Hyperparameter Rentang Nilai
Random
Forest

N_estimators 100,150
Max_features Sqrt, log2
Max_depth 10, 15
Min_samples_split 2, 4
Min_samples_leaf 1, 2
Bootstrap True, False
Criterion Gini, Entropy

Extra Tree N_estimator 100, 150
Max_depth 10, 15
Min_samples_split 2, 5
Bootstrap False

3.7. Result Training Model

 In the model training stage, all the models that have been
created will be trained using the pre-determined training data.
Each model will use the training data to identify and learn
patterns and relationships within the dataset. The goal at this
stage is to prepare and train the models so that they can make
accurate decisions on new or test data.

3.8. Result Evaluating Model

Machine learning models with SMOTE and Sequential
Feature Selection (SFS) before and after GridSearch tuning
show that GridSearch tuning significantly improves
performance, with the highest performance achieved by the
Random Forest model tuned with GridSearch at an 80:20 ratio,
resulting in an accuracy of 94.87%, recall of 95.69%,
precision of 93.33%, F1-score of 94.07%, specificity of
97.97%, and ROC AUC of 99.13%. This demonstrates that
SMOTE and SFS help address data imbalance and select the
most relevant features. Thus, the use of GridSearch tuning,
SMOTE, and SFS can optimize model performance.

Handling missing values with the mode produces the best
model performance compared to handling missing values by
deletion. For a more comprehensive evaluation of the model,
please refer to Table 3 for comparison of machine learning
algorithms with SMOTE and SFS feature slection before and
after tuning gridsearch with mode value, Table 4 to
comparison of machine algorithms with SFS feature selection
without SMOTE before and after tuning gridSearch with
mode values, Table 5 to comparison of machine learnibg
algorithms with SMOTE and SFS feature selection before and
after gridsearch tuning with missing value removal, and Table
6 to comparison of machine learning algorithms with SFS
feature selection without SMOTE before and after gridsearch
tuning with missing value removal.

Table 3. Comparison of ML Algorithms with SMOTE and SFS Be-

fore and After Tuning Gridsearch with Mode Value

with SMOTE and SFS Before

Model RF ET RF
Tuning

ET
Tuning

Accuracy 87.17 84.61 94.87 87.17
Recall 89.02 85.00 95.69 87.22
Precision 86.80 83.09 93.33 85.49
F1-Score 86.12 83.24 94.07 85.55
Specificity 94.80 93.46 97.97 94.85
ROC AUC 98.34 98.05 99.13 98.01

After Tuning Gridsearch With Mode Value (K=7)

Model RF ET RF
Tuning

ET
Tuning

Accuracy 88.69 90.26 90.24 91.79
Recall 89.27 91.04 91.31 92.82
Precision 88.92 90.33 89.97 91.53
F1-Score 87.86 89.54 89.66 91.18
Specificity 94.50 96.06 95.29 96.06
ROC AUC 96.94 98.03 97.45 98.20

Journal of Research in Artificial Intelligence for Systems and Applications (RAISA) https://journal.unej.ac.id/RAISA

17

Table 4. Comparison of ML with SFS without SMOTE Before and

After Tuning Gridsearch with Mode Values

with SFS without SMOTE Before

Model RF ET RF
Tuning

ET
Tuning

Accuracy 77.41 77.41 77.41 80.64
Recall 78.90 78.90 78.90 81.28
Precision 78.15 78.91 78.15 80.93
F1-Score 77.65 77.45 77.65 80.21
Specificity 90.10 90.74 90.10 91.76
ROC AUC 92.52 92.38 93.16 93.40

After Tuning Gridsearch with Mode Values (K=7)

Model RF ET RF
Tuning

ET
Tuning

Accuracy 85.77 83.17 86.42 86.42
Recall 86.13 83.46 86.81 86.18
Precision 86.21 84.09 86.91 87.08
F1-Score 85.05 82.68 85.86 85.66
Specificity 92.73 92.93 93.07 92.93
ROC AUC 94.37 94.45 94.74 94.50

Table 5. Comparison of ML Algorithms with SMOTE and SFS Be-

fore and After GridSearch Tuning with Missing Value Removal

Model RF ET RF
Tuning

ET
Tuning

Accuracy 87.17 84.61 89.74 84.61
Recall 85.41 83.33 87.50 83.33
Precision 84.96 82.74 87.74 82.74
F1-Score 84.66 82.04 87.36 82.04
Specificity 94.49 93.62 95.41 93.62
ROC AUC 96.16 93.61 95.44 94.89

Table 6. Comparison of ML Algorithms with SFS without SMOTE

Before and After GridSearch Tuning with Missing Value Removal

Model RF ET RF
Tuning

ET
Tuning

Accuracy 77.41 77.41 77.41 80.64
Recall 77.57 75.33 75.79 78.17
Precision 78.57 76.66 75.76 80.65
F1-Score 76.53 75.87 75.38 78.88
Specificity 90.74 89.70 90.43 90.88
ROC AUC 95.12 92.31 95.01 95.13

4. Conclusion

The following are the conclusions of the research re-
sult:
1. The performance results of both algorithms, extra

trees and random forest, with SMOTE and SFS be-
fore gridsearch optimization showed good perfor-
mance, but the extra trees algorithm with SMOTE
and SFS performed slightly better, with the best per-
formance at k=7. After gridsearch optimization, the
performance of both random forest and extra trees al-
gorithms improved. Overall, the optimized random
forest model with SMOTE and SFS achieved the best
performance at an 80:20 ratio. This indicates that the
gridsearch tuning method with SMOTE and SFS is
very effective in improving model performance in
handling hepatitis disease symptom data.

2. The performance results of both machine learning
models with SFS without SMOTE before and after
gridsearch tuning show that gridsearch tuning can
improve performance results at various data ratios,
although in some cases there is a decrease or stagna-
tion in performance after gridsearch tuning. The best
results before and after gridsearch optimization were
found in both models at a 90:10 ratio. Overall, with-
out SMOTE, the performance is quite good, but not
as good as with SMOTE.

References

[1] A. Singh, J. C. Mehta, D. Anand, P. Nath, B. Pandey, and
A. Khamparia, “An intelligent hybrid approach for hep-
atitis disease diagnosis: Combining enhanced k-means
clustering and improved ensemble learning,” in Expert
Systems, Blackwell Publishing Ltd, Jan. 2021. doi:
10.1111/exsy.12526.

[2] M. T. M. Shata, H. F. Hetta, Y. Sharma, and K. E. Sher-
man, “Viral hepatitis in pregnancy,” Oct. 01, 2022, John
Wiley and Sons Inc. doi: 10.1111/jvh.13725.

[3] M. M. Majzoobi, S. Namdar, R. Najafi-Vosough, A. A.
Hajilooi, and H. Mahjub, “Prediction of Hepatitis dis-
ease using ensemble learning methods,” J Prev Med Hyg,
vol. 63, no. 3, pp. E424–E428, 2022, doi:
10.15167/2421-4248/jpmh2022.63.3.2515.

[4] D. Castaneda, A. J. Gonzalez, M. Alomari, K. Tandon,
and X. B. Zervos, “From hepatitis A to E: A critical re-
view of viral hepatitis,” Apr. 28, 2021, Baishideng Pub-
lishing Group Co. doi: 10.3748/wjg.v27.i16.1691.

[5] M. Wang and Z. Feng, “Mechanisms of hepatocellular
injury in hepatitis A,” 2021, MDPI AG. doi:

Journal of Research in Artificial Intelligence for Systems and Applications (RAISA) https://journal.unej.ac.id/RAISA

18

10.3390/v13050861.

[6] O. Gholizadeh et al., “Hepatitis A: Viral Structure, Clas-
sification, Life Cycle, Clinical Symptoms, Diagnosis Er-
ror, and Vaccination,” 2023, Hindawi Limited. doi:
10.1155/2023/4263309.

[7] S. Hammond, “Hepatitis A,” Workplace Health Saf, vol.
69, no. 3, p. 142, Mar. 2021, doi:
10.1177/2165079920988687.

[8] A. Din, Y. Li, and Q. Liu, “Viral dynamics and control of
hepatitis B virus (HBV) using an epidemic model,” Al-
exandria Engineering Journal, vol. 59, no. 2, pp. 667–
679, Mar. 2020, doi: 10.1016/j.aej.2020.01.034.

[9] T. Saranya, S. Sridevi, C. Deisy, T. D. Chung, and M. K.
A. A. Khan, “Performance Analysis of Machine Learn-
ing Algorithms in Intrusion Detection System: A Review,”
in Procedia Computer Science, Elsevier B.V., 2020, pp.
1251–1260. doi: 10.1016/j.procs.2020.04.133.

[10] M. E. Febrian, F. X. Ferdinan, G. P. Sendani, K. M.
Suryanigrum, and R. Yunanda, “Diabetes prediction us-
ing supervised machine learning,” in Procedia Computer
Science, Elsevier B.V., 2022, pp. 21–30. doi:
10.1016/j.procs.2022.12.107.

[11] A. Alotaibi et al., “Explainable Ensemble-Based Ma-
chine Learning Models for Detecting the Presence of
Cirrhosis in Hepatitis C Patients,” Computation, vol. 11,
no. 6, Jun. 2023, doi: 10.3390/computation11060104.

[12] M. Ogunsanya, J. Isichei, and S. Desai, “Manufacturing
Letters Grid Search Hyperparameter Tuning in Additive
Manufacturing Processes-NC-ND license (https://crea-
tivecommons.org/licenses/by-nc-nd/4.0) Peer-review
under responsibility of the Scientific Committee of the
NAMRI/SME,” 2023, [Online]. Available: www.sci-
encedirect.com

[13] H. Mamdouh Farghaly, M. Y. Shams, and T. Abd El-Ha-
feez, “Hepatitis C Virus prediction based on machine
learning framework: a real-world case study in Egypt,”
Knowl Inf Syst, vol. 65, no. 6, pp. 2595–2617, Jun. 2023,
doi: 10.1007/s10115-023-01851-4.

[14] S. Keputusan Direktur Jenderal Pendidikan Tinggi, dan
Teknologi Nomor, N. Sharfina, and N. Ghaniaviyanto
Ramadhan, “Terakreditasi SINTA Peringkat 3 Analisis

SMOTE Pada Klasifikasi Hepatitis C Berbasis Random
Forest dan Naïve Bayes,” 2026.

[15] A. Al Ahad, B. Das, M. R. Khan, N. Saha, A. Zahid, and
M. Ahmad, “Multiclass liver disease prediction with
adaptive data preprocessing and ensemble modeling,”
Results in Engineering, vol. 22, Jun. 2024, doi:
10.1016/j.rineng.2024.102059.

[16] A. M. Ali et al., “Explainable Machine Learning Ap-
proach for Hepatitis C Diagnosis Using SFS Feature Se-
lection,” Machines, vol. 11, no. 3, Mar. 2023, doi:
10.3390/machines11030391.

[17] S. Kumari, D. Kumar, and M. Mittal, “An ensemble ap-
proach for classification and prediction of diabetes melli-
tus using soft voting classifier,” International Journal of
Cognitive Computing in Engineering, vol. 2, pp. 40–46,
Jun. 2021, doi: 10.1016/j.ijcce.2021.01.001.

[18] A. Q. Md, S. Kulkarni, C. J. Joshua, T. Vaichole, S. Mo-
han, and C. Iwendi, “Enhanced Preprocessing Approach
Using Ensemble Machine Learning Algorithms for De-
tecting Liver Disease,” Biomedicines, vol. 11, no. 2, Feb.
2023, doi: 10.3390/biomedicines11020581.

[19] S. Yousefi, S. Yin, and M. G. Alfarizi, “Intelligent Fault
Diagnosis of Manufacturing Processes Using Extra Tree
Classification Algorithm and Feature Selection Strate-
gies,” IEEE Open Journal of the Industrial Electronics
Society, vol. 4, pp. 618–628, 2023, doi:
10.1109/OJIES.2023.3334429.

[20] B. S. Ahamed, M. S. Arya, and A. O. Nancy V, “Predic-
tion of Type-2 Diabetes Mellitus Disease Using Machine
Learning Classifiers and Techniques,” May 10, 2022,
Frontiers Media S.A. doi: 10.3389/fcomp.2022.835242.

[21] D. A. Anggoro and S. S. Mukti, “Performance Compari-
son of Grid Search and Random Search Methods for Hy-
perparameter Tuning in Extreme Gradient Boosting Al-
gorithm to Predict Chronic Kidney Failure,” Interna-
tional Journal of Intelligent Engineering and Systems,
vol. 14, no. 6, pp. 198–207, Dec. 2021, doi:
10.22266/ijies2021.1231.19.

[22] D. Valero-Carreras, J. Alcaraz, and M. Landete, “Com-
paring two SVM models through different metrics based
on the confusion matrix,” Comput Oper Res, vol. 152,
Apr. 2023, doi: 10.1016/j.cor.2022.106131.

Journal of Research in Artificial Intelligence for Systems and Applications (RAISA) https://journal.unej.ac.id/RAISA

19

[23] M. A. Islam, M. Z. H. Majumder, and M. A. Hussein,
“Chronic kidney disease prediction based on machine
learning algorithms,” J Pathol Inform, vol. 14, Jan. 2023,
doi: 10.1016/j.jpi.2023.100189.

[24] A. Alizargar, Y. L. Chang, and T. H. Tan, “Performance
Comparison of Machine Learning Approaches on Hepa-
titis C Prediction Employing Data Mining Techniques,”

Bioengineering, vol. 10, no. 4, Apr. 2023, doi:
10.3390/bioengineering10040481.

[25] Y. Fan, X. Lu, and G. Sun, “IHCP: interpretable hepatitis
C prediction system based on black-box machine learn-
ing models,” BMC Bioinformatics, vol. 24, no. 1, Dec.
2023, doi: 10.1186/s12859-023-05456-0.

