Journal of Research in Artificial Intelligence for Systems and Applications (RAISA)
2025, Vol. 01, No. 02, E-ISSN : 3090-3157

RAISA

©® JOURNAL OF RESEARCH IN ARTIFICIAL @
INTELLIGENCE FOR SYSTEMS AND APPLICATIONS

Original Research

Implementation of Layered Encryption Using Vigenére and
Rail Fence Cipher on Live Chat Systems for Customer Data
Security

M. Fathony Ramdhan

Departement of Information Technology, University of Jember

Abstract

The security of digital communication has become increasingly crucial with the growing use of instant messaging services. This
study aims to design and implement a live chat system that applies layered encryption using two classical cryptographic
algorithms, namely Vigenére Cipher and Rail Fence Cipher, to enhance message confidentiality. Messages sent by users are first
encrypted using the ASCII-based Vigenére Cipher with mod 256, and then encrypted again using the Rail Fence Cipher with a
zigzag pattern. The testing process considered several parameters such as message length (10100 characters), variations in key
length, number of rails (2-5), and the number of messages sent per minute. The results indicate that the combination of these
two algorithms can maintain message security without affecting real-time communication performance. This approach
demonstrates that layered encryption using classical algorithms is still relevant for enhancing the security of digital

communications in small to medium-scale applications.

Keywords

Live Chat, Vigenere Cipher, Rail Fence Cipher, Layered Encryption, Data Security

1. Introduction

The rapid development of digital technology has signifi-
cantly increased the need for real-time communication sys-
tems, especially to support interactions between customers
and service providers. One of the most widely used forms of
communication is live chat, which allows users and service
providers to communicate directly and instantly. However,
data exchange in live chat systems is highly vulnerable to se-
curity threats such as eavesdropping, hacking, and exploita-
tion by unauthorized parties. This raises serious concerns re-
garding the confidentiality and integrity of customer data
transmitted through such media. To address these issues, cryp-
tography serves as an effective solution to protect data by con-
verting messages into an unreadable format for anyone with-
out the proper decryption key. Both classical and modern

cryptography offer various encryption methods, each with its
own advantages and limitations. Nevertheless, using a single
encryption method is often not sufficient to withstand various
types of increasingly complex and sophisticated cyberattacks.
Therefore, a stronger approach is required by implementing
layered encryption to significantly enhance data security.
This study proposes the implementation of a combination
of two classical encryption methods, namely Vigenere Cipher
as a substitution algorithm and Rail Fence Cipher as a trans-
position algorithm. This combination is expected to increase
the level of complexity in the decryption process for unauthor-
ized parties, thereby providing additional protection for data
transmitted through the live chat system. In this context, the
research focuses on designing and building a live chat

*Corresponding author: M. Fathony Ramdhan

Email addresses:
mfathonyramdhan@gmail.com (M. Fathony Ramdhan)

Received: 19 Juli 2025; Accepted: 25 Juli 2025; Published: 30 Juli 2025

mailto:mfathonyramdhan@gmail.com
https://hi.fisip.unej.ac.id/

Journal of Research in Artificial Intelligence for Systems and Applications (RAISA). https://journal.unej.ac.id/RAISA

application that applies layered encryption using these two al-
gorithms, ensuring secure communication in real- time.

2. Research Method

2.1 Data Collection

The researcher conducted an in-depth literature review by
examining various scholarly sources, such as cryptography
textbooks, research journals, scientific articles, previous the-
ses, and reputable online sources discussing classical cryptog-
raphy, particularly the Vigenere Cipher and Rail Fence Cipher
algorithms. This review aimed to gain a comprehensive un-
derstanding of the operational principles of each algorithm,
including the encryption and decryption processes, character
manipulation mechanisms in text, and the mathematical as-
pects underlying both methods.

Additionally, the researcher analyzed the strengths and
weaknesses of each algorithm from the perspective of crypto-
graphic theory and their application in digital communication
systems. The study specifically highlighted the potential
weaknesses of using a single algorithm, such as vulnerability
to frequency analysis or structural patterns within the cipher-
text, which are often exploited by cryptanalysts to reveal the
original message.

Through this review, the researcher identified the oppor-
tunity to combine the Vigenere Cipher as a substitution algo-
rithm and the Rail Fence Cipher as a transposition algorithm
to form a more robust layered encryption method. This com-
bination is expected to complement each other and enhance
the protection of data transmitted in the live chat system while
increasing the complexity of cryptanalysis for unauthorized
parties. The results of this literature review serve as an essen-
tial foundation for defining system requirements, designing
the encryption-decryption mechanism, and establishing eval-
uation indicators during the system testing phase.

2.2 Requirement Analysis

System requirements were identified, including both func-
tional and non-functional requirements. The analysis results
cover key features such as sending and receiving encrypted
messages in real time, as well as the expected security speci-
fications and system performance.

2.3 System Design

The live chat system is designed using a web-based client-
server architecture. This stage includes designing the database
structure, user interface, client-side encryption- decryption
flow, and server-side API endpoints. The design also involves
the use of PHP and JavaScript programming languages as well
as a MySQL database.

2.4 Implementation

This stage covers the development of the system based on
the previously created design. The implementation process in-
cludes creating database tables, coding the Vigenére and Rail
Fence algorithms on the client side, and integrating client-
server communication using AJAX. The system is tested lo-
cally using XAMPP.

2.5 Testing

The system is tested to ensure that all functions work
properly. The testing includes black-box testing, functional
testing for the encryption and decryption processes, as well as
performance testing by measuring encryption-decryption time
and the system’s response to message traffic.

2.6 Research Tools

The tools and software used in this research are presented
in the following table:

Table 3. List of Tools and Software Used in the
Research

Name /
No Type of Tool o Usage
Specification
Used to develop the
1 Programming PHP 82, HTML, backend and frontend

Languages CSS, JavaScript of the system.

2 Database MySQL Stores user data and
encrypted messages.
Writing and manag-

3 Code Editor ~ Visual Studio Code ing program code.

Running a local

4 Local Server XAMPP server for applica-
tion testing.
Running and testing
5 WebBrowser Google Chrome the live chat applica-
tion interface.
Measuring the dura-
6 Stopwatch/ PHPmicrotime() tion of the encryp-
Timer function tion and decryption
process.
Browser Chrome Inspect Monitoring network
7 Developer Tools traffic and debug-
Tools ging.

Journal of Research in Artificial Intelligence for Systems and Applications (RAISA). https://journal.unej.ac.id/RAISA

2.7 Data Analysis Method

The data obtained in this research will be analyzed using a
descriptive quantitative approach. The analysis focuses on
several key aspects, namely:

1. The time required in the encryption and decryption
process to measure the efficiency of the algorithms.

2. A comparison of the ciphertext forms produced by us-
ing a single algorithm and the combined algorithms to
observe differences in encryption complexity.

3. An evaluation of the effectiveness of the double en-
cryption method based on the success rate of decryp-
tion and its resistance to basic cryptanalysis

The results of this analysis are expected to provide an over-
view of the extent to which the combination of the Vigenére
Cipher and Rail Fence Cipher algorithms can enhance data se-
curity in the live chat system.

3. Results and Analysis

3.1 Implementation of the Live Chat System

This live chat system is designed using a client-server ar-
chitecture, where the encryption process is carried out entirely
on the server side after the message is received from the client.
With this approach, messages sent by users are received by the
server in plain text, then immediately encrypted using the pre-
defined algorithm before being stored or forwarded to the re-
cipient. On the recipient’s side, the message is still in en-
crypted form and will be decrypted again by the server before
being displayed to the user.

The combination of substitution and transposition increases
the complexity of the resulting ciphertext and provides addi-
tional protection against cryptanalysis attacks. This layered
encryption approach, implemented on the server side, ensures
the integrity and confidentiality of messages during storage
and transmission, while also facilitating centralized security
control.

3. 2 Process layered Ecryption

The encryption stage in this system uses a layered encryp-
tion approach that combines two classical cryptographic algo-
rithms, namely the Vigenere Cipher and the Rail Fence Cipher.
The encryption process is performed server-side, where mes-
sages received from users are immediately encrypted by the
server before being stored in the database. This approach aims
to enhance the security of customer data during both transmis-
sion and storage.

1. Encryption Using the Vigenére Cipher

The first step in the encryption process is carried out using
the Vigenere Cipher algorithm, a polyalphabetic substitution
algorithm that uses a secret key to transform each character in
the message into an encrypted character. Unlike the classical

10

approach, which is limited to the letters A—Z, this implemen-
tation applies ASCII values to enable encryption of all charac-
ters, including lowercase letters, numbers, symbols, and
spaces.
The following is the implementation of the encryption func-
tion in PHP
function vigenereEncryptMod256($plaintext, $key)
{
$encrypted = ";
$keyLength = strlen($key);

for ($i = 0; $i < strlen($plaintext); $i++) {

$p = ord($plaintext[$i]);

$k = ord($key[$i % $keyLength]);
$c = ($p + $k) % 256;
$encrypted .= chr($c);

}

return $encrypted;}

The implementation of the Vigenére encryption, packaged
in the function vigenereEncryptMod256() using the PHP pro-
gramming language, is used to encrypt text messages with a
modified Vigenére Cipher algorithm capable of handling all
8-bit ASCII characters. This function works by adding the
ASCII value of each character in the message (plaintext) with
the corresponding character from the key, and then processing
the result using the modulo 256 operation to ensure that it re-
mains within the valid ASCII character range.

2. Encryption Using the Rail fence Cipher

After the message is encrypted using the Vigenére Cipher
algorithm, the next step is the application of the Rail Fence
Cipher, which functions as a transposition algorithm. The Rail
Fence Cipher rearranges the positions of characters in the ci-
phertext produced by the Vigenére Cipher based on a zig-zag
pattern across a number of "rails" or rows. In this system im-
plementation, the use of 3 rails in the Rail Fence Cipher is
chosen as it provides a balanced configuration between en-
cryption pattern complexity and implementation efficiency.
With 3 rails, the zig-zag pattern is sufficient to significantly
scramble the order of characters while remaining manageable
for both encryption and decryption processes, whether per-
formed manually or programmatically.

function railFenceEncrypt($text, $rails = 3)
{ if ($rails <= 1) return $text;

$fence = array fill(0, $rails, ");

$rail = 0;

$direction = 1;

for ($i = 0; $i < strlen($text); $i++) {
$fence[$rail] .= $text[$i];

$rail += $direction;
if ($rail 0 || $rail
$direction *=-1;}}

return implode(", $fence); }

Srails - 1) {

Journal of Research in Artificial Intelligence for Systems and Applications (RAISA). https://journal.unej.ac.id/RAISA

The railFenceEncrypt() function implements the Rail Fence
Cipher algorithm with three rows (rails). This cipher works by
rearranging the characters of the input ciphertext (the result of
the previous encryption) into a zigzag pattern across the rows,
and then concatenating the characters from each row to pro-
duce the final transposed ciphertext. This technique strength-
ens encryption security by adding an additional layer of char-
acter rearrangement.

The Rail Fence Cipher encryption process is carried out as
follows:

1. The message is placed in a zigzag pattern across sev-
eral rows (the number of rows equals the number of
rails).

2. Once the entire message is placed, the characters from
each row are read sequentially from top to bottom to
form the final ciphertext.

3. For example, when using 3 rails, the arrangement of
characters will form an up-and-down staircase-like pat-
tern, and the final result will be the combination of
characters from each rail arranged vertically

3. 3 Description Message

After the encryption process is carried out in layers using
the ASCII-based Vigenere Cipher followed by the Rail Fence
Cipher, the original message (plaintext) can be retrieved
through a decryption process executed sequentially but in the
reverse order of encryption. The decryption begins by revers-
ing the character arrangement scrambled by the Rail Fence Ci-
pher, and the result is then used as the input for decryption
with the ASCII-based Vigenére Cipher algorithm. The ulti-
mate goal of this process is to successfully recover the original
message that had previously been secured.

function railFenceDecrypt($cipher, $rails = 3)

{ $len = strlen($cipher);

$rail = array_fill(0, $rails, array_fill(0, $len, "\n"));
$dir_down = null;

$row = 0;

$col = 0;

for ($i = 0; $i < $len; $i++) {if ($row == 0) {
$dir_down = true;

} elseif ($row == $rails - 1) {

$dir_down = false; }

il[$row][$col++] =",

$row += $dir_down ? 1:-1;}

$index = 0;

for ($i = 0; $i < $rails; $i++) { for ($j = 0; $j < $len; $j++)
{if ($rail[$i][$j] == "' && Sindex < $len) {
$rail[$i][$j] = $cipher[$index++]; } } }

Sresult =";
$row = 0;
$col = 0;

for ($i = 0; $i < $len; $i++) { if ($row == 0) {
$dir_down = true;

} elseif ($row == $rails - 1) {

$dir_down = false; }

if ($rail[$row][$col] !="*") {

$result .= $rail[$row][$col++];

$row += $dir_down ? 1:-1;}

return $result; }

The implementation of the railFenceDecrypt() function in
PHP is used to reverse the character transposition process of
the Rail Fence Cipher with three rails. This function recon-
structs the zigzag positions of the characters based on the ci-
phertext length and then places the characters back into their
original positions. The result is the initial encrypted text,
which is then ready to be further decrypted using the Vigenére
algorithm to obtain the original message. This process repre-
sents the initial stage in layered decryption.

3. 4 System Testing

Testing was carried out to ensure that the developed live
chat system functions properly, particularly in the encryption
and decryption processes using the Vigenére and Rail Fence
Cipher algorithms. The testing also covered overall system
functionality and performance aspects.

1. Types of Testing

Several types of testing conducted in this study include:

a) Black-box Testing
This testing was performed by examining all system
features without looking into the program code. The
main focus was to ensure that the system responds
correctly to inputs and produces the expected outputs.

b) Performance Testing (Semi-Automated)
This testing was carried out to measure the speed of
the encryption and decryption processes using the
microtime() function in PHP. The purpose of this test
is to determine execution time with precision and to
ensure that the system remains responsive when used
in real-time conversations.

2. Testing Tools

System testing was carried out entirely using a browser,
with the help of built-in features and additional scripts embed-
ded in the code. Several tools and techniques used include:

a. Browser & Live Chat System Interface
Used to monitor the communication process between
the client and the server, including:

e Sending and receiving message activities.

Journal of Research in Artificial Intelligence for Systems and Applications (RAISA). https://journal.unej.ac.id/RAISA

o The content of messages sent and received.
e Validation to ensure that stored data is not in
plaintext form.

b. microtime() Function in PHP
Used to measure the duration of the encryption and
decryption processes on the server side with preci-
sion. The measurement results are recorded directly
in the system log or displayed in the browser as part
of performance testing.

3. Testing Parameters

Testing was carried out using several parameter variations
as follows:

a. Message Length
Experiments were conducted with messages ranging
from 10 to 100 characters to observe the effect of
message length on processing time.

b. Vigencre Key Variations
Keys of different lengths were used (short: 3 charac-
ters, medium: 8 characters, long: 16 characters) to ex-
amine the impact of key complexity.

c. Number of Messages per Minute
A simulation of sending and receiving messages was
conducted within a one-minute timeframe to test sys-
tem stability and responsiveness.

3.5 System Testing Result

Based on the tests conducted with the specified parameters,
the results obtained are as follows:

1. Encryption and Decryption Accuracy

The system successfully encrypted and decrypted all
messages accurately, both for short and long messages
(up to 2000 characters), as well as with various key
length combinations.

2. Data security in the database

Each original message was encrypted and stored as cipher-
text, then decrypted back to be compared with the initial mes-
sage. The test results showed that all ciphertexts were success-
fully decrypted accurately, whether the messages were plain
text, questions, numbers, or symbols. This proves that the en-
cryption-decryption process works correctly and consistently,

Table 3. Encryption and Decryption Time Testing

ensuring that data in the database is not stored in a directly
readable form (plaintext), thereby increasing the security level

of the stored information.

Table 2. Black-box Testing of Encryption and Decryption

No Test Scenario

Test Case

Expected Result

Sending a
1 message from
user
Receiving a
2 message by
CS

Encryption
with long key

Encrypting a
long message
(100 charac-

ters)

Database stor-

age

User sends mes-
sage “halo” with
a short key

CS receives and
decrypts the
message

User sends a
message with a
key length of 16
characters

User sends a
message with a
length of 100
characters
Check the data-
base contents af-
ter the message

is sent

Message is encrypted
and stored in the da-
tabase as ciphertext

Message appears as
“halo” after decryp-

tion

Message can still be
encrypted and de-

crypted correctly

Encryption time re-
mains < 5 ms and de-
cryption result re-

mains accurate

Content is stored as
ciphertext, unreadable

directly

3. Resistance to Cryptanalysis

This test aims to assess the system’s level of resistance to

cryptanalysis attacks, which are attempts to break encrypted
messages (ciphertext) without going through the legitimate
decryption process. The test was conducted by simulating at-
tacks based on various levels of attacker knowledge and capa-
bility, represented in five different scenarios.

4. System Performance

Processing time testing was carried out to determine how
fast the system performs encryption and decryption based on
message length and key complexity.

No Message Length Encryption Key Key Length Encryption Time Decryption Time ~ Total Time Status
K3y#S3cur3@2024!P4
1 characters 5 19 chars 0.016 ms 0.016 ms 0.032 ms SUCC ESS
ss
StrOng#S3curlty!K3y$
2 characters 20 24 chars 0.025 ms 0.049 ms 0.074 ms SUCC ESS

2024

Journal of Research in Artificial Intelligence for Systems and Applications (RAISA). https://journal.unej.ac.id/RAISA

Sup3r#S3cur3@K3y!2

3 characters 50 27 chars 0.052 ms 0.116 ms 0.0168 ms SUCC ESS
024P4ss
V3ry#LOng@S3cur3!K

4 characters 100 33 chars 0.088 ms 0.151 ms 0.239ms SUCC ESS
3y$2024#P4ss
LOng#M3ss4g3@K3y!

5 characters 2500 28 chars 1.739 ms 3.033 ms 4.772 ms SUCC ESS
2024S3cur3

Table 3 shows the results of encryption and decryption time 4. By combining lightweight yet effective classical algo-

testing using a combination of Vigenere Cipher Mod 256 and
Rail Fence Cipher. The testing was carried out with the micro-
time() function in PHP against messages of varying lengths
and keys.

The results show that the process remains very fast— even
for a message of 2,500 characters, it only takes about 4.7 mil-
liseconds. This proves that the algorithms used are efficient
and suitable for real-time systems such as live chat applica-
tions

4. Conclusion

Based on the analysis, design, and implementation of the
live chat application system with double encryption using the
Vigenere Cipher and Rail Fence Cipher algorithms, several
conclusions can be drawn:

1. The system successfully implemented layered encryp-
tion and decryption, where messages sent by users were
first encrypted using the Vigenére algorithm and then re-
encrypted with Rail Fence before being stored and deliv-
ered to the recipient.

2. The double encryption feature enhances communication
security, as messages cannot be read without knowledge
of both methods and the parameters used (Vigencre key
and Rail Fence rail count). This was proven by the test
results, which showed that all data was stored in cipher-
text form and could not be understood without the de-
cryption process.

3. The system demonstrated stable and efficient perfor-
mance, with relatively fast encryption and decryption
times (< 5 ms) even when handling messages of varying
lengths and higher parameter complexity levels.

13

rithms, this application provides a practical example that
even simple cryptographic algorithms remain relevant
for securing small to medium-scale communication, es-
pecially when combined strategically.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

Aryanti, A., & Mekongga, 1. (2018). Implementation of
Rivest Shamir Adleman (RSA) and Vigenére Cipher in
web-based information system. E3S Web of Conferences,
10007.https://doi.org/10.1051/e3sconf/20183110007

Hartanto, P., Nguyen, P. T., Muchtar, T., Hayadi, B. H.,
& Rahim, R. (2020). Application of Rail Fence Cipher
of encrypting and decrypting text messages. Journal of

Advanced Research in Dynamical and Control Systems,
12.https://doi.org/10.5373/JARDCS/V1212/S20201094

Hidayatulloh, M., & Insannudin, E. (n.d.). Enkripsi dan
dekripsi menggunakan Vigenére Cipher ASCII Java.
Teknik Informatika, UIN Sunan Gunung Djati Bandung.

Stallings, W. (2017). Cryptography and network security:

Principles and practice (7th ed.). Pearson.

Forouzan, B. A. (2007). Cryptography and network se-
curity. McGraw-Hill.

Munir, R. (2006). Pengantar kriptografi. Informatika
Bandung.

Kurniawan, A. (2015). Membangun aplikasi chat seder-
hana dengan PHP dan WebSocket. Andi Offset.

Faris, A. M., Rijal, M., & Sa’ad, M. (2023). Keamanan
data dengan super enkripsi: Gabungan Vigenere dan Rail
Fence Cipher. Jurnal Media Komputer dan Sains, 11(2),
52-60.

Zailani, R., Yuliansyah, H., & Kurniawan, A. (2023). Im-
plementasi algoritma Rail Fence Cipher pada aplikasi
chat Android untuk pengamanan pesan. Jurnal Sistem
dan Informatika, 5(1), 61-69.

https://doi.org/10.1051/e3sconf/20183110007
https://doi.org/10.5373/JARDCS/V12I2/S20201094

