
Research Article INDONESIAN CHIMICA LETTERS 
 

 

https://journal.unej.ac.id/ICL                          Indonesia Chimica Letters, 2024, 1, 15-18 15 

 

DOI: 10.19184/ICL.v3i1.940 

 

Development of Dihydrofolate Reductase Inhibitor Based on 

QSAR and Molecular Docking 

Sudarko Sudarko[a], Rimba Candra Kristyono[a], Anak Agung Istri Ratnadewi[a], Wuryanti Handayani[a] 

 

Abstract: QSAR modeling allows for predicting activity 

through quantitative relationships between molecular structure 

and activity. This research uses DEEPScreen, which is a 

development of QSAR for searching new drugs. This research 

leverages DEEPScreen-QSAR modeling to optimize the 

predictive power of machine learning algorithms on a dataset of 

645 molecules from previous research. The optimized model 

achieves an accuracy of 0.7461 and precision of 0.8169, 

demonstrating its effectiveness in the virtual screening stage. 

The optimized DEEPscreen-QSAR model is used to screen 

approximately 1.9 million small molecules in the ChEMBL 

database, resulting in binary classification predictions of active 

(1) molecules as 781,213 and inactive (0) molecules as 

1,133,325 (molecules with IC50 activity ≤10,000 nM are 

considered active). The active (1) molecules obtained are 

screened again to find molecules that can be absorbed by the 

body (orally) using Lipinski’s RO5 with 0 deviations, resulting 

in 557,428 active molecules that can be absorbed by the body. 

These screening results are validated using molecular docking 

methods by linking protein and ligand to determine Gibbs free 

energy (∆G) and interactions using PyRx, PyMOL, and Biovia 

Discovery Studio programs. Based on the results of this 

research, candidate DHFR inhibitors with codes 

CHEMBL3302655, CHEMBL1384989, and 

CHEMBL1729486 are recommended. 
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INTRODUCTION 

Dihydrofolate reductase (DHFR) is an enzyme that reduces 

dihydrofolate to tetrahydrofolate. DHFR plays a crucial role in 

regulating the amount of tetrahydrofolate within cells. 

Tetrahydrofolate is an important precursor in DNA biosynthesis 

and cell growth. Metabolic errors in dihydrofolate reductase can 

lead to various diseases in the cardiovascular group, including 

coronary heart disease [1]. 

Virtual screening is an in silico method that can sift through 

thousands or even millions of compounds to find potential 

ligands that can be used for drug candidates. Virtual screening 

techniques are divided into two types: structure-based virtual 

screening and ligand-based virtual screening. Structure-based 

virtual screening uses the 3D structure of a compound to predict 

its binding affinity to a receptor, while ligand-based virtual 

screening uses descriptors of active molecules and their known 

structural activities, where the ligand, not the receptor structure, 

is known. This type of ligand-based virtual screening uses 

Quantitative Structure-Activity Relationship (QSAR) to establish 

a quantitative relationship between the structure and biological 

activity of a compound [2]. 

Quantitative Structure-Activity Relationship (QSAR) is one 

of the virtual screening method capable of predicting the activity 

of a molecule. This method can predict thousands or even 

millions of molecular activities from databases faster than other 

virtual screening methods [3]. The results of virtual screening 

prediction models can be validated and compound scoring can be 

performed using molecular docking [4]. 

The target of this research is the Dihydrofolate Reductase 

Inhibitor. To obtain potential inhibitors, virtual screening will be 

conducted using 2D structure modeling with DEEPScreen- 

QSAR and molecular docking. Using DEEPScreen-QSAR, we 

will perform 2D structure modeling on a dataset of 645 molecules 

(ChEMBL202 activity data from ChEMBL database) to identify 

potential inhibitors of dihydrofolate reductase. This 

computational approach aims to predict and optimize the binding 

affinity of small molecules with the enzyme, leading to the 

discovery of novel inhibitors. 

METHODS 

Material and Equipment  

The tools used in this research are: Computer/PC Lenovo 

Idea Center AIO 520-5MID (operating system Linux Ubuntu 

20.04 LTS, RAM 4GB, Intel core i5) equipped with software 

Python 3.7.1, Visual Studio Code, Autodock Vina, Autodock 

Tools1.5.6, MGLTools 1.5.6, Pymol, and Biovia Discovery 

Studio. 

Modeling using DEEPScreen-QSAR 

The dataset of DHFR protein target was downloaded from 

Rifaioglu et al., 2020 work. The dataset consists of 645 entries, 

comprising active and inactive molecules, then divided into two 

parts: training data (80%) and testing data (20%). A computer 

with Linux operating system installed with Python, Anaconda 

20.04, and DEEPScreen was prepared. Subsequently, 324 jobs 

were run. The results include true positives, false positives, true 

negatives, and false negatives. The job with the lowest false 

positive value was selected as the model for DHFR inhibitor 

prediction. The best model is determined based on evaluation 

results calculating accuracy, precision, sensitivity, and specificity 

values. 

Screening using DEEPScreen-QSAR 

A total of 1.92 million molecules data (small molecule 

category  in  ChEMBL),  whether  their  activity  are   known  or  
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or unknown (never been experimentally tested), were screened 

using the previously generated DEEPScreen-QSAR inhibitor 

DHFR prediction model. The screening will produce active 

molecules in the form of true positives and false positives. 

Subsequently, a screening is conducted again with Lipinski's rule 

of 5 to identify molecules that can be absorbed by the body and 

those that cannot. Molecules that can be absorbed by the body 

with the highest activity value will undergo molecular docking 

for binding energy scoring. 

Docking Molecular  

The protein target is downloaded from www.rcsb.org with 

PDB ID 1DRF (Dihydrofolate Reductase) in *.pdb format. The 

ligand of that molecule is removed using Biovia Discovery 

Studio. Afterward, the molecule format is converted from *.pdb 

to *.pdbqt format using Autodock Tools. Active drug candidate 

molecules resulting from screening are downloaded from 

https://zinc15.docking.org in *.sdf format, then the format is 

converted from *.sdf to *.pdbqt format using Autodock Tools. 

Subsequently, docking is performed between the protein target 

with its ligand removed and the active molecules resulting from 

screening downloaded using Autodock Vina. The docking results 

will show the activity scores of the Dihydrofolate reductase-

ligand complex. Then, they are ranked or sorted to obtain 

recommendations for Dihydrofolate reductase inhibitors. 

Visualization with PyMOL 

The docking results using Autodock Vina with the highest 

energy values are then analyzed using PyMOL. The analysis is 

conducted to determine the location of the protein's active site 

binding with the ligand or inhibitor. 

RESULT AND DISCUSSION 

Model Optimization 

The DHFR dataset with CHEMBL202 code consists of 645 

structure image files in *png format and activity data in *json 

format. The activity data contains active (1) and inactive (0) 

molecules. The dataset has been divided into training data (64%) 

comprising 411 molecules, testing data (20%) comprising 130 

molecules, and validation data (16%) comprising 104 molecules. 

Model optimization with DEEPScreen-QSAR involves changing 

hyperparameters. The variations used are FC1 (100, 200, 300); 

FC2 (100, 200, 300); LR 0.01; BS (32 and 64); DO (0.05, 0.10, 

0.20, 0.25, and 0.30); and Epoch (100, 200, and 300). In this 

research, a total of 324 model variations were obtained (Table 1). 

Below is the table of DEEPScreen-QSAR modeling results for 

several models with the highest accuracy.

9,5 FC1 FC2 LR BS DO Epoch TP FP TN FN Accuracy Precision 

1 100 200 0,01 64 0,2 300 58 13 34 20 0,7461 0,8169 

2 100 100 0,01 32 0,3 300 70 25 27 8 0,7461 0,7368 

3 300 200 0,01 64 0,05 200 55 11 41 23 0,7384 0,8333 

4 200 300 0,01 32 0,05 200 63 19 33 15 0,7384 0,7682 

5 100 100 0,01 64 0,05 100 75 27 25 6 0,7307 0,7216 

Table 1. Result of DEEPScreen-Qsar Model Optimization

Screening of DHFR Inhibitors 

The best model is run to ensure optimal performance and 

usability in screening. Subsequently, the model can be used for 

screening using DEEPScreen-QSAR. The molecules to be 

screened with this model are a total of 1,914,538 small molecule 

categories downloaded through the ChEMBL20 database. These 

small molecules are compounds with known or unknown activity 

against the DHFR protein, to predict their activity as active (1) or 

inactive (0) molecules. These small molecules are downloaded in 

*.png format or represented as 2D images of 200x200 pixels, 

serving as input for the computer to predict their activity. 

Screening of the 1,914,538 small molecules with the 

DEEPScreen-QSAR model resulted in predictions of active (1) 

molecules and inactive (0) molecules. The screening results 

obtained with active (1) molecules. Below are some active and 

inactive molecules resulting from screening with DEEPScreen-

QSAR in Table 2. 

No ChEMBL ID Classification 

1 1572916 1 (Active) 

2 4289099 1 (Active) 

3 1563372 1 (Active) 

4 3246902 1 (Active) 

5 208896 0 (Inactive) 

Table 2. Screening Results with DEEPScreen-QSAR 

 

This second screening employs Lipinski’s Rule of Five 

(RO5). The active molecules obtained from the screening using 

DEEPScreen-QSAR undergo another round of screening with 

Lipinski’s RO5 to determine whether these molecules can be 

absorbed by the body [5]. 

Screening with Lipinski's Rule of Five (RO5) was conducted 

with a total of 781,213 active molecules to obtain molecules 

capable of being absorbed by the body. Molecules that can be 

absorbed by the body adhere to RO5 with zero deviations. The 

screening results with RO5 yielded active molecules capable of 

being absorbed by the body with zero deviations, totaling 

557,428, as shown in Table 3. Verification of screening results 

using Lipinski's RO5. 

Docking Molecular 

Docking results in protein-ligand complexes with Gibbs free 

energy. The analysis results from molecular docking can be seen 

in Table 4. Based on Table 4, molecules with strong chemical 

binding potential to the protein exhibit stable interactions. The 

stability of interactions and the spontaneity of a reaction can be 

observed from the values of Gibbs free energy (∆G). Molecular 

docking results based on Table 4 in the overall docking results of 

this study show a negative Gibbs free energy value, indicating 

that the molecules can react spontaneously. Gibbs free energy 

values that are low (negative) are considered spontaneous and 

stable, meaning that the energy required to interact with the 

protein decreases, making it easier to react [6].
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Parameter 

No ChEMBL ID Classification MW Log P HBD HBA Violation of RO5 Lipinski 

1 CHEMBL4214274 1 252,35 2,07 2 3 0 

2 CHEMBL304403 1 276,70 3,80 4 0 0 

3 CHEMBL199014 1 428,49 4,08 2 7 0 

4 CHEMBL611359 1 338,89 -0,66 4 9 0 

5 CHEMBL1998243 1 362,25 5,57 0 4 1 

Table 3. Screening Results with Lipinski's Rule of Five 

 

No 

 

Ligand  

Free Energy 

(kcal/mol) 

Amino Acid Residues 

Hydrogen Bond  Hydrophobic Interaction 

1 NDP 

(natural ligand) 

-7,1 Thr56, Ser118 

Ser119,Thr146 

 

2 CHEMBL3302655 -8,5 Ser118*,Ser119* 

Thr146* 

Lys54*; Val120* 

3 CHEMBL1384989 -8,1 Ile16, Thr56* 

Val115, Tyr121 

Val8; Ala9; Phe34 

Lys55 

5 CHEMBL1729486 -7,8 Ala9, Ile16 

Thr56* 

Val8; Leu22; Phe34 

Lys55 

Table 4. Molecular Docking Results of DHFR 

  

                         (a)                                                      (b) 

Figure 1. 3D Visualization of Docking Results of Ligand (a) NDP (b) CHEMBL3302655 

 

(a)                                           (b) 

Figure 2. 2D Visualization of Docking Results of Ligand (a) NDP (b) CHEMBL3302655 

Visualization results can be seen on Figure 1 and 2.  

For the ligands NDP and CHEMBL 3302655, Figure 2 shows 

binding sites on the same amino acid residue, namely Ser119. 

The interactions involve hydrogen bonding, indicated by dashed 

green lines, between the ligands' hydrogen donor groups and the 

Ser119 amino acid residue. In NDP, the oxygen atom in the -CO 

group serves as the hydrogen donor, while in simvastatin, 

hydrogen bonding occurs between the hydrogen atom in the -NH 

group as the hydrogen donor and Ser119 as the hydrogen 

acceptor. In CHEMBL3302655, hydrogen bonding occurs 
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between the hydrogen atom in the -NH group as the donor and 

the oxygen atom in the -CO group of the Ser119 amino acid 

residue as the acceptor. Ser119 (Serine) is a polar amino acid, 

thus tends to form hydrophilic interactions. 

The interactions between the NDP ligand and the target 

protein include not only hydrophobic interactions with Lys54, 

Lys55, Leu75, and Arg77 but also electrostatic interactions such 

as van der Waals bonds with Ile16, Gly53, Ser76, Arg91, Ser92, 

Gly 117, and Val120. Similarly, the ligand with the CHEMBL 

3302655 code also exhibits hydrophobic interactions with Lys54 

and Val120. CHEMBL1384989 shows hydrophobic interactions 

with Va18, Ala9, Phe34, and Lys34. CHEMBL172986 interacts 

hydrophobically with Val8, Leu22, Phe34, and Lys55. 

The interactions between the target protein and the test 

ligands involve both hydrogen bonding and similar hydrophobic 

interactions, suggesting the potential for similar activities [8]. 

CONCLUSION 

DEEPScreen-QSAR modeling of 324 hyperparameter 

variations resulted in model optimization with an accuracy of 

0.7902 and precision of 0.8169 at FC1=100; FC2=200; LR=0.01; 

BS=64; DO=0.2; and Epoch=300. Screening using the 

DEEPScreen-QSAR model yielded 781,214 active molecules (1) 

out of 1,914,538 small molecules in the ChEMBL database. 

Subsequent screening using the Lipinski's RO5 resulted in 

557,429 active molecules (1) that can be absorbed by the body, 

with no deviations or meeting the criteria for drug absorption. 

Molecular docking results obtained Gibbs free energy (∆G) 

values and recommendations for potential drug candidates for 

dihydrofolate reductase, namely CHEMBL3302655 with ∆G of 

-8.5 ∆G, CHEMBL1384989 with ∆G of -8.1 ∆G, and 

CHEMBL1729486 with ∆G of -7.8 ∆G. 
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