Vegetation Index Assessment Modeling Using Remote Sensing And Soil Surveying The Slope of Argopura Mountain: a Case Study in Kalianan Village, Krucil District, Probolinggo Regency

Authors

  • Basuki Basuki Department of Soil Science, Faculty of Agriculture, University of Jember
  • Eka Bagus Budi Prasetya Department of Soil Science, Faculty of Agriculture, University of Jember
  • Anggelya Mashughestiningrum Department of Soil Science, Faculty of Agriculture, University of Jember
  • Amelia Ayu Pitaloka Department of Soil Science, Faculty of Agriculture, University of Jember
  • Jarni Devita Faomasi Hia Department of Soil Science, Faculty of Agriculture, Jember University, Indonesia
  • Fitriani Sadim Klaida Department of Soil Science, Faculty of Agriculture, Jember University, Indonesia

DOI:

https://doi.org/10.19184/jsa.v3i1.1535

Keywords:

Remote sensing, NDVI, Land Survay, Vegetation index, modeling, Slope of Mount Argopura

Abstract

Vegetation is a form of soil with a density level in each region that is influenced by other land factors such as rainfall, soil conditions, and water. Density levels can be analyzed either manually in the field or using remote sensing technology. Field observations have weaknesses, one of which is that the time used for a wide area > 1 ha requires > 2 days. The use of remote sensing technology has the advantage of being able to cover large areas in a short time with a modeling system. The research uses a data exploration modeling method with an NDVI approach to calculate the analysis of Landsat 8 image bands. NDVI is calculated based on bands 4 (red) and 5 (near-Infrared). The research results show that in 2017, Kalianan Village, Krucil District, had a vegetation index dominated by dense and very dense density classes. In 2022, the vegetation index of Krucil Village will be dominated by medium- and low-density classes. The differences that occur in 2017 and 2022 could occur due to the deforestation of land for tourism and residential areas.

References

Andriani, Putranto, D. D. A., Affandi, A. K., & Ibrahim, E. (2018). Interpretation of land use and land cover at lowland area using by NDVI and NDBI. Ecology, Environment and Conservation, 24(2), 651–657.

Asgari, N., Ayoubi, S., Demattê, J. A. M., Jafari, A., Safanelli, J. L., & Silveira, A. F. D. Da. (2020). Digital mapping of soil drainage using remote sensing, DEM and soil color in a semiarid region of Central Iran. Geoderma Regional, 22, e00302. https://doi.org/10.1016/j.geodrs.2020.e00302

Basuki, Anggriawan, R., Sari, V. K., & Rohman, F. A. (2024). Soil classification and prediction model for critical land on the slopes of Mount Raung in Indonesia. Journal of Degraded and Mining Lands Management, 11(3), 5610–5621. https://doi.org/10.15243/jdmlm.2024.113.5610

Basuki, B., Bambang Hermiyanto, & Subhan Arif Budiman. (2023). Identifikasi Dan Estimasi Kerusakan Tanah Dengan Metode Berbasis Obia Citra Satelit Sentinel-2B Dan Pembobotan Lereng Gunung Raung. Jurnal Ilmiah Rekayasa Pertanian Dan Biosistem, 11(1), 56–72. https://doi.org/10.29303/jrpb.v11i1.443

Basuki, B., Hermiyanto, B., Budiman, S. A., & Alfarisy, F. K. (2023). The evaluation of land use cover changes through the composite approach of Landsat 8 and the land use capability index for the Bedadung watershed. Journal of Degraded and Mining Lands Management, 10(4), 4659–4672. https://doi.org/10.15243/jdmlm.2023.104.4659

Basuki, B., & Sari, V. K. (2024). Specifications of Sugar Cane Varieties Based on Land Characteristic and Typology. Jurnal Teknik Pertanian Lampung (Journal of Agricultural Engineering), 13(1), 132. https://doi.org/10.23960/jtep-l.v13i1.132-146

Basuki, B., Sulistiawati, N., Verdian, D., & Naely, Z. (2023). The sensitivity level of landslide risk using Geographic Information System on the slopes of Mount Argopura , East Java , Indonesia. 11(1), 4949–4959. https://doi.org/10.15243/jdmlm.2023.111.4949

Basuki, Novikarumsari, N. D., Ibanah, I., & Fariroh, I. (2021). Pemberdayaan Masyarakat Desa Sukamakmur Kabupaten Jember dalam Budidaya Lobster Air Tawar.

Gumma, M. K., Thenkabail, P. S., Hideto, F., Nelson, A., Dheeravath, V., Busia, D., & Rala, A. (2011). Mapping irrigated areas of Ghana using fusion of 30 m and 250 m resolution remote-sensing data. Remote Sensing, 3(4), 816–835. https://doi.org/10.3390/rs3040816

How Jin Aik, D., Ismail, M. H., Muharam, F. M., & Alias, M. A. (2021). Evaluating the impacts of land use/land cover changes across topography against land surface temperature in Cameron Highlands. PLOS ONE, 16(5), e0252111. https://doi.org/10.1371/journal.pone.0252111

Jia, K., Wei, X., Gu, X., Yao, Y., Xie, X., & Li, B. (2014). Land cover classification using Landsat 8 Operational Land Imager data in Beijing, China. Geocarto International, 29(8), 941–951. https://doi.org/10.1080/10106049.2014.894586

Mahboob, M. A., Genc, B., Celik, T., Ali, S., & Atif, I. (2019). Mapping hydrothermal minerals using remotely sensed reflectance spectroscopy data from Landsat. Journal of the Southern African Institute of Mining and Metallurgy, 119(3), 279–289. https://doi.org/10.17159/2411-9717/2019/v119n3a7

Mulyani, A., Nursyamsi, D., & Syakir, M. (2020). Strategi Pemanfaatan Sumberdaya Lahan untuk Pencapaian Swasembada Beras Berkelanjutan. Jurnal Sumberdaya Lahan, 11(1), 11. https://doi.org/10.21082/jsdl.v11n1.2017.11-22

Munyati, C., & Sinthumule, N. I. (2021). Comparative Suitability of Ordinary Kriging and Inverse Distance Weighted Interpolation for Indicating Intactness Gradients on Threatened Savannah Woodland and Forest Stands. Environmental and Sustainability Indicators, 12(100151), 1–11. https://doi.org/10.1016/j.indic.2021.100151

Nurrochman, A., Febriani, R., & Yuliatama, V. P. (2020). Aplikasi Citra Landsat 8 OLI/TIRS Dalam Mengidentifikasi Alterasi Hidrotermal Skala Regional; Studi Kasus Kecamatan Suoh dan Bandar Negeri Suoh. Jurnal Geosains Dan Remote Sensing, 1(2), 89–96. https://doi.org/10.23960/jgrs.2020.v1i2.41

Quigley, K. M., Kolka, R., Sturtevant, B. R., Dickinson, M. B., Kern, C. C., Donner, D. M., & Miesel, J. R. (2020). Prescribed burn frequency, vegetation cover, and management legacies influence soil fertility: Implications for restoration of imperiled pine barrens habitat. Forest Ecology and Management, 470–471(April), 118163. https://doi.org/10.1016/j.foreco.2020.118163

Rahman, F. A., Suryawati, S., Supriyadi, S., & Basuki. (2024). Google earth engine for spatio-temporal drought monitoring in Bangkalan, Indonesia. BIO Web of Conferences, 99. https://doi.org/10.1051/bioconf/20249905006

Ramadanningrum, D. P., Kamal, M., & Murti, S. H. (2020). Image-based tea yield estimation using Landsat-8 OLI and Sentinel-2B images. Remote Sensing Applications: Society and Environment, 20(July), 100424. https://doi.org/10.1016/j.rsase.2020.100424

Sampurno RM, A. T. (2016). Klasifikasi Tutupan Lahan Menggunakan Citra Landsat 8 Operational Land Imager (Oli) Di Kabupaten Sumedang. Jurnal Teknotan, 10(2), 61–70. https://doi.org/10.1016/s0376-7388(00)85017-6

Setiawati, T. C., Nurcholis, M., Basuki, Budiman, S. A., & Yudiantoro, D. F. (2024). Elemental composition and mineralogical characteristics of volcanic ash and soil affected by the eruption of Mount Semeru, East Java. Journal of Degraded and Mining Lands Management, 11(3), 5741–5753. https://doi.org/10.15243/jdmlm.2024.113.5741

Soetriono, Herlambang, A. P., Farisi, O. A., Basuki, Zahrosa, D. B., Malika, U. E., Hanafie, R., Habriantono, B., & Maharani, A. D. (2024). Response to the Application of Combination of Inorganic and Organic Fertilizers on the Growth and Yield of Chili Pepper Plants in Trenggalek Regency. AIP Conference Proceedings, 3176(1). https://doi.org/10.1063/5.0223090

Soetriono, S., Farisi, O. A., Basuki, B., Prastowo, S., Malika, U. E., & Ayu, D. (2023). The effectiveness of giving organic matter to the productivity of tomato plants The Effectiveness Of Giving Organic Matter To The Productivity Of Tomato Plants. AIP Conference Proceedings, 020014(January), 020014-1-020014–020016.

Yang, X., Zhao, S., Qin, X., Zhao, N., & Liang, L. (2017). Mapping of urban surface water bodies from sentinel-2 MSI imagery at 10 m resolution via NDWI-based image sharpening. Remote Sensing, 9(6), 1–19. https://doi.org/10.3390/rs9060596

Yu, W., Zhou, W., Dawa, Z., Wang, J., Qian, Y., & Wang, W. (2021). Quantifying Urban Vegetation Dynamics from a Process Perspective Using Temporally Dense Landsat Imagery.

Downloads

Published

2024-09-23

How to Cite

Basuki, B., Prasetya, E. B. B. ., Mashughestiningrum, A., Pitaloka, A. A. ., Hia, J. D. F. ., & Fitriani Sadim Klaida. (2024). Vegetation Index Assessment Modeling Using Remote Sensing And Soil Surveying The Slope of Argopura Mountain: a Case Study in Kalianan Village, Krucil District, Probolinggo Regency. Journal of Soilscape and Agriculture, 3(1). https://doi.org/10.19184/jsa.v3i1.1535