Potential Plant Growth-Promoting Microorganism (PGPM) as Biological Control Agents of Paddy in Indonesia
Abstract
Today, the main goal of agriculture is increasing crop yields to meet the ever-increasing human population. Climate change has increased the challenges associated with the cultivation of food crops, especially rice. It affects rice production due to the influence of biotic factors (Plant Pest Organisms) and an uncertain environment. To address this phenomenon, Plant Growth Promoting Microbial (PGPM) is considered a better alternative than using chemicals. It has been proven that Plant Growth Promoting Rhizobacteria (PGPR) and Fungi (PGPF) are effective in suppressing plant diseases and controlling pests by producing inhibitory chemicals and inducing immune responses in plants. Furthermore, PGPM increases growth and yields. As biofertilizers and biopesticides, PGPR and PGPF are considered attractive and economically viable approaches to the cultivation of rice in Indonesia. The potential for PGPM utilization is still high considering the diversity of microbes and the fact that these microbes can be found under a variety of environmental conditions. However, it is also a challenge to develop products, especially treatments to maintain the performance of the microbes that will be used
References
Abdelaziz, S., Belal, E.E., Al-Quwaie, D.A., Ashkan, M.F., Alqahtani, F.S.,· Khaled El-Tarabily, A., El-Mageed,. T.A., Shami, A., Nader, M.M., and Hemeda, N.F. 2023. Extremophilic bacterial strains as plant growth promoters and biocontrol agents against Pythium ultimum and Rhizocotnia solani. Journal of Plant Pathology. 105(4): 1347 – 1369
Abd El-Mageed, T. A., Rady, M. M., Taha, R. S., Abd El Azeam, S., Simpson, C. R., and Semida, W. M. (2020). Effects of integrated use of residual sulfur-enhanced biochar with effective microorganisms on soil properties, plant growth and short- term productivity of Capsicum annuum under salt stress. Sci. Hortic. 261:108930. doi: 10.1016/j.scienta.2019.108930
Adl, S., M. (2016). Rhizosphere, Food Security, and Climate Change: A Critical Role for Plant-Soil Research. Rhizosphere 1(1), 1–3. DOI. 10.1016/j.rhisph.2016.08.005
Aisyah, M., D., N. HagusTarno, B., T. Rahardjo. (2015). Respon Ulat Kubis Plutella xylostella Linn (Lepidoptera: Plutellidae) Setelah Aplikasi Plant Growth Promoting Rhizobacteria (PGPR) pada Tanaman Kailan (Brassica Oleracea Var. Alboglabra L). Jurnal Hama dan Penyakit Tumbuhan, 3 (3): 96-105. [Indonesian]
Ahemad M. and M. Kibret. (2014). Mechanisms and Applications of Plant Growth Promoting Rhizobacteria: Current Perspective. J King Saud Univ-Sci, 26(1):1–20
Alabouvette,C., Raaijmakers, J. M, Paulitz, T. C, Steinberg, C, Moënne-Loccoz Y .2009. The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil. 5 (21) :56-88.
Alawiyah F., M. dan E. D., Cahyono. (2018). Persepsi Petani Terhadap Introduksi Inovasi Agen Hayati Melalui Kombinasi Media Demplot dan FFD. Jurnal Ekonomi Pertanian dan Agribisnis (JEPA), 2 91): 19-28 [Indonesian]
Aldo, W. and A. Anhar. (2021). The response of Isolates Trichoderma spp. on vigor index of local rice seeds varities Kuriak kusuik. In Proceedings of the national conference on Biology, Padang, 14 December, pp. 1547-1551
Andini, D., and E. T., Tondok. (2020). Perlakuan Air Panas dan Plant Growt Promoting Rhizobacteria untuk menekan Cendawan Terbawa Benih pada Padi Varietas IPB-3S. Jurnal Fitopatologi Indonesia, 16(6):235-242. [Indonesian]
Anggraeni, F., Isnaeni, dan A. T. Poernomo. 2016. Pengaruh konsentrasi molase terhadap aktivitas enzim fibrinolitik dari Bacillus subtilis ATCC 6633. Berskala Ilmiah Kimia Farmasi. 5(1): 18-24. [Indonesian]
Aristyawan T, Muchtar R, Meidiantie D. 2020. Pengaruh agen hayati terhadap wereng batang cokelat (Nillavarpata lugens Stall) Pada tanaman padi. Jurnal Ilmiah Respati. 11:69-79
Arystiawan, T., R. Muchtar, and D. Meidiantie. (2020). Pengaruh Agen Hayati terhadap Wereng Batang Cokelat (Nillavarpata lugens Stall) pada Tanaman Padi. Jurnal Ilmiah Respati, 11 (1). [Indonesian]
Bashan Y, L. E., de Bashan., S. R., Prabhu and J. P., Hernandez. (2014). Advances in plant Growth-Promoting Bacterial Inoculant Technology: Formulations and Practical Perspectives (1998–2013). Plant Soil, 378: 1–33. DOI: 10.1007/s11104-013-1956-x
Bhattacharyya P. N., D. K., Jha. (2012). Plant Growth-Promoting Rhizobacteria (PGPR): Emergence in Agriculture. World J Microbiol Biotechnol, 28(4):1327–1350
Bowen G. D, A. D., Rovira. (1999). The rhizosphere and its management to improve plant growth. Adv Agron, 66:1–102.
Zhang -Espinosa K., R. I., García-Cabrera, A. Bedoya-López, M. A., Trujillo-Roldán, and N. A., Valdez-Cruz. (2015). Positive Effect of Reduced Aeration Rate on Growth and Stereospecificity Of Dl-Malic Acid Consumption by Azospirillum brasilense: improving The Shelf Life Of A Liquid Inoculant Formulation. J. Biotechnol, 195: 74–81. DOI: 10.1016/j.jbiotec.2014.12.020
Chandrasekaran, R.; Revathi, K.; Thanigaivel, A.; Kirubakaran, S.A.; Senthil-Nathan, S. 2014. Bacillus subtilis chitinase identified by matrix-assisted laser desorption/ionization time-of flight/time of flight mass spectrometry has insecticidal activity against Spodoptera litura Fab. Pestic. Biochem. Physiol, 116: 1–12.
de Salamone I. E. G., R. Esquivel-Cote, D. J Hernández-Melchor, A. Alarcón, D. P Singh, V. K Gupta, and R. Prabha. (2019). Manufacturing and Quality Control 2 of Inoculants from the paradigm of circular agriculture. In Microbial Interventions in Agriculture and Environment: Vol. 2: Rhizosphere, Microbiome, and Agro-ecology (pp. 37–74). Springer.
Farrar K., D. Bryant, and N. Cope-Selby. (2014). Understanding and Engineering Beneficial Plant-Microbe Interactions: Plant Growth Promotion in Energy Crops. Plant Biotechnol J, 12(9): 1193–1206. DOI: 10.1111/pbi.12279
El-Saadony M.T, A. M Saad, S. M Soliman, H. M Salem, A. I Ahmed, M. Mahmood, A. M El-Tahan, A. A., M Ebrahim, T. A Abd El-Mageed, S. H Negm, S. Selim, A. O Babalghith, A. S Elrys, K. A El-Tarabily and S. F AbuQamar. (2022). Plant Growth- Promoting Microorganisms as Biocontrol Agents of Plant Diseases: Mechanisms, Challenges and Future Perspectives. Front Plant Sci, 13: 923880. DOI: 10.3389/fpls.2022.923880
Elnahal, A. S., El-Saadony, M. T., Saad, A. M., Desoky, E. S. M., El-Tahan, A. M., Rady, M. M., et al. (2022). The Use of Microbial Inoculants For Biological Control, Plant Growth Promotion, And Sustainable Agriculture: A Review. Eur. J. Plant Pathol. 162: 759–792. doi: 10.1007/s10658-021-02393-7
Etesami H., D. K Maheshwari. (2018). Use Of Plant Growth Promoting Rhizobacteria (PGPRs) With Multiple Plant Growth Promoting Traits In Stress Agriculture: Action Mechanisms And Future Pros- Pects. Ecotoxicol Environ Saf, 156:225–246
Figueiredo MDVB, Seldin L, de Araujo FF et al. 2010. Plant growth promoting rhizobacteria: fundamentals and applications. In: Maheshwari DK (ed) Plant growth and health promoting bacteria. Springer, Berlin/Heidelberg, pp 21–43
Gozzo, F. and Faoro, F. 2013. Systemic acquired resistance (50 years after discovery): moving from the lab to the field. J Agric Food Chem, 26;61(51):12473-91
Geng, C.; Nie, X.; Tang, Z.; Zhang, Y.; Lin, J.; Sun, M.; Peng, D. (2016). A novel serine protease, Sep1, from Bacillus firmus DS-1 has nematicidal activity and degrades multiple intestinal-associated nematode proteins. Sci. Rep. 6, 25012
Gouda S., Kerry R. G., Das G., Paramithiotis S., Shin H. -S., Patra J. K. (2018). Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiol. Res. 206, 131–140. DOI: 10.1016/j.micres.2017.08.016
Gray E.J, D. L Smith. (2005). Intracellular and Extracellular PGPR: commonalities And Distinctions in The Plant-Bacterium Signaling Processes. Soil Biol Biochem, 37(3):395–412
Hariyanti D. P, Giyanto, S. Wiyono, and Widodo. (2022). Penekanan Penyakit Blas Pada Tanaman Padi melalui Perlakuan Cendawan Endofit Nigrospora sp. Jurnal Fitopatologi Indonesia, 18(5):195-204. [Indonesian]
Heydari, A. and M. Pessarakli. 2010. A Review on Biological Control of Fungal Plant Pathogens using Microbial Antagonists. Journal of Biological Sciences 10: 273-290.
Hidayat, Y.S., M Nurdin, and R. D Suskandini. (2014). Penggunaan Trichoderma sp. sebagai Agensia Pengendalian Pyricularia oryzae Cav. Penyebab Blas Padi. J Agrotek Tropika, 2(3):414-419. [Indonesian].
Hussain M., A. Zsgher, M. Tahir, et al. (2016). Bacteria in Combination With Fertilizers Improve Growth, Productivity and Net Returns of Wheat (Triticum aestivum L.). Pak J Agric Sci, 53:633–645.
Hossain MT, Khan A, Chung EJ, Rashid MH, Chung YR (2016) Biological control of rice bakanae by an endophytic Bacillus oryzicola YC7007. Plant Pathol J 32:228–241. DOI: 10.5423/PPJ.OA.10.2015.0218
Jaber L. R., and S. E Araj. (2017). Interactions among Endophytic Fungal Entomopathogens (Ascomycota: Hypocreales), the Green Peach Aphid Myzus persicae Sulzer (Homoptera: Aphididae), and the Aphid Endoparasitoid Aphidius colemani Viereck (Hymenoptera: Braconidae). Biol Control, 116:53–61
Jannah, R. (2016). Pengaruh Aplikasi Bakteri Bacillus cereus dan Pseudomonas aeruginosa terhadap Produktivitas Tanaman Padi Yang Terinfeksi Penyakit Blas Sebagai Referensi Mata Kuliah Mikrobiologi. P.hD. Universitas Islam Negeri Ar-Raniry, Aceh. [Indonesian
Jha, Y and Subramanian, R.B. 2012. PGPR regulate caspase-like activity, programmed cell death, and antioxidant enzyme activity in paddy under salinity. Physiol Mol Biol Plants. 20(2): 201–207.
Kang S.W., M. S Rahman, A. N Kim, K. Y Lee, C. Y Park, W. L Kerr, et al. (2017). Comparative study of The Quality Characteristics of Defatted Soy Flour Treated by Supercritical Carbon Dioxide and Organic Solvent. J. Food Sci Technol, 54, 2485–2493. DOI: 10.1007/s13197-017-2691-8
Kamal R, Y. S Gusain, V. Kumar. (2014). Interaction and Symbiosis of AM Fungi, actinomycetes And Plant Growth Promoting Rhizobacteria with Plants: Strategies for The Improvement of Plants Health and Defense System. Int J Curr Microbiol Appl Sci , 3: 564–585
Kazeeroni, E.A, Sajeewa, S.N.M., Arjun, A., Abdullah M.A., Sang-Mo K., Lee-Rang K., and In-Jung L. 2021. Rhizospheric Bacillus amyloliquefaciens Protects Capsicum annuum cv. Geumsugangsan From Multiple Abiotic Stresses via Multifarious Plant Growth-Promoting Attributes. Front Plant Sci. DOI: 10.3389/fpls.2021.669693.
Kennedy I. R., A. Choudhury, M. L Kecskés. (2014). Non-symbiotic Bacterial Diazotrophs in Crop-Farming Systems: Can Their Potential for Plant Growth Promotion Be Better Exploited?. Soil Biol Biochem, 36:1229–1244.
Lobo C. B., M. S Juárez Tomás, E Viruel, M. A Ferrero, and M. E Lucca. (2019). Development of Low-Cost Formulations of Plant Growth-Promoting Bacteria To Be Used As Inoculants In Beneficial Agricultural Technologies. Microbiol Res, 219: 12–25. DOI 10.1016/j.micres.2018.10.012
Lopez, D. C., Sword GA. (2015). The endophytic fungal entomopathogens Beauveria bassiana and Purpureocillium lilacinum enhance the growth of cultivated cotton (Gossypium hirsutum) and negatively affect survival of the cotton bollworm (Helicoverpa zea). Biol Control 89:53–60
Mouden S, J. A Bac-Molenaar, I. F Kappers, E. A. M Beerling, and K. A Leiss. (2021). Elicitor application In Strawberry Results in Long-Term Increase of Plant Resilience Without Yield Loss. Front Plant Sci, 12:1321. DOI: 10.3389/fpls.2021. 695908
Mustqimah N. M., S. Nurhartika, and A. Muhibuddin. (2019). Pengaruh Waktu inokulasi Mikoriza Arbuskular Pada Campuran Media Tanam AMB-07 dan Pasir pantai terhadap Pertumbuhan Dan Karbohidrat Padi (Oryza sativa L.) Var. Inpari 13. Jurnal Sains dan Seni, 8(2):49-53. [Indonesian]
Nazari, M., and Smith, L.Donald. 2020. A PGPR-Produced Bacteriocin for Sustainable Agriculture: A Review Thuricin 17 Characteristic and Applications. Frontiers in Plant Science. 11:1-7
Nurmala C. S., I. M Sudana, and I. D. P Singarsa. (2021). Pengaruh Jenis Bakteri PGPR dalam beberapa Jenis Media Pembawa untuk Meningkakan Pertumbuhan dan Ketahanan Tanaman Padi Beras Merah Lokal Jatiluwih terhadap Penyakit. Jurnal Agroekoteknologi Tropika, 10(1):233-243. [Indonesian]
Pieterse C. M. J., and S. C. M Van Wees. (2015). Induced Disease Resistance. In: Lugtenberg B (ed) Principles of plant-Microbe Interactions: Microbes for Sustainable Agriculture. Springer, Cham, pp 123–134
Pieterse C. M. J., C. Zamioudis, R. L Berendsen, D. M Weller, S. C. M. V Wees, andP. A. H. M Bakker. (2014). Induced Systemic Resistance by Beneficial Microbes. Annu Rev Phytopathol, 52: 347–375. DOI: 10.1146/annurev-phyto- 082712-102340
Philppot L, J. M Raaijmakers, P. Lemanceau, and W. H van der Putten. (2013). Going back to the roots: The microbial ecology of the rhizosphere. Nat Rev Microbiol, 11: 789–799. DOI: 10.1038/nrmicro3109
Rachmawati, F. (2022). Efektivitas Cendawan Endofit Penginduksi Ketahanan padi terhadap Alelopati. P.hD. Jember, Universitas Negeri Jember. [Indonesian]
Rashid MH, Khan A, Hossain MT, Chung YR (2017) Induction of systemic resistance against aphids by endophytic Bacillus velezensis YC7010 via expressing PHYTOALEXIN DEFICIENT4 in Arabidopsis. Front Plant Sci. 8:211. DOI: 10.3389/fpls.2017.00211
Radzki, W., Gutierrez Mañero, F., Algar, E., Lucas, J., García, J. A., García-Villaraco, A., et al. (2013). Bacterial siderophores efficiently provide iron to iron-starved tomato plants in hydroponics culture. Antonie Van Leeuwenhoek, 104: 321–330. doi: 10.1007/s10482-013-9954-9
Reddy C. A., and R. Saravanan. 2013. Polymicrobial Multi-Functional Approach For Enhance- Ment Of Crop Productivity. Adv Appl Microbiol, 82: 53–113. DOI: 10.1016/B978-0-12-407679-2.00003-X
Ruiu, L. (2020). Plant-Growth-Promoting Bacteria (PGPB) against Insects and Other Agricultural Pests. Agronomy, 10, 861; DOI:10.3390/agronomy10060861
Singh J. S., A. N Kumar, A. Rai, and D. P Singh. (2016). Cyanobacteria: A Precious Bio-Resource In Agriculture, Ecosystem, And Environmental Sustainability. Frontiers in Microbiol, 7(529): 1–19. DOI: 10.3389/fmicb.2016.00529
Sudewi S., A. Ala, Baharuddin, and M. Farid. (2020). Keragaman Organisme Pengganggu Tanaman (OPT) pada Tanaman Padi Varietas Unggul Baru (VUB) dan varietas lokal pada percobaan semi lapangan. Jurnal Agrikultura, 31(1): 15–24. [Indonesian]
van Dijk M., T. Morley, M. L Rau, and Yashar. (2021). A meta-Analysis of Projected Global Food Demand and Population at Risk Of Hunger For The Period 2010–2050.
Subowo Y. B,. (2015). Penambahan pupk hayati jamur sebgai pendukung pertumbuhan tanaman padi (Oryza sativa) pada tanah salin. In Proceedings of the national conference on Biodiversitas Indonesian, pp.150-154.
Sudewi, S. (2020). PGPR (Plant Growth Promotion Rhizobacteria) Asal Padi Lokal Aromatik Sulawesi Tengah: Karakterisasi dan potensinya untuk memacu pertumbuhan dan produktivitas padi. M. Sc. Makassar: Universitas Hasanuddin [Indonesian]
Salomon, M. V., Funes Pinter, I., Piccoli, P., and Bottini, R. (2017). “Use of plant growth-promoting rhizobacteria as biocontrol agents: induced systemic resistance against biotic stress in plants,” in Microbial applications: Biomedicine, agriculture and industry. ed. V. C. Kalia (Cham: Springer International Publishing), 133–152. DOI: 10.1007/978-3-319-52669-0_7
Shen, X., Hu, H., Peng, H., Wang, W., and Zhang, X. (2013). Comparative genomic analysis of four representative plant growth-promoting rhizobacteria in Pseudomonas. BMC Genomics 14:271. DOI: 10.1186/1471-2164-14-271
Tjamos, S. E, Flemetakis, E, Paplomatas, E. J, Katinakis, P. 2010. Induction of resistance to Verticillium dahliae in Arabidopsis thaliana by the biocontrol agent K-165 and pathogenesis-related proteins gene expression. Molecular Plant-Microbe Interactions, 18(6), 555-561.
Vejan P., R. Abdullah, T. Khadiran, S. Ismail, and B. A Nasrulhaq. (2016). Role of Plant Growth Promoting Rhizobacteria in Agricultural Sustainability: A Review. Molecules , 21:573. DOI: 10.3390/molecules21050573
Waghunde R. R., R. M Shelake, A. N Sabalpara. (2016). Trichoderma: A Significant Fungus For Agriculture and Environment. Afr J Agric Res, 11:1952–1965
Yanti Y, H. Hamid, N. Hermeria, and M. P Tanjung. (2021). Penggunaan Trichoderma Spp. untuk Pengendalian Penyakit dan Peningkatan Pertumbuhan Tanaman Cabai Di Nagari Taeh Baruah Kecamatan Payakumbuh Kabupaten Limapuluh Kota. Jurnal Hilirisasi Ipteks, 4(4):187-196. [Indonesian]
Yogaswaea, Y., R. Suharjo, R. Suskandini, and C. Ginting. (2020). Kemampuan Isolat jamur Trichoderma spp. sebagai antagonis. J Agrotek Tropika, 8(2): 235-246
Yustisia, D. (2020). Eksplorasi Cendawan Endofit Padi Lokal Sinjai Dan Potensinya Sebagai Pemacu Pertumbuhan Tanaman Padi (Oryza sativa L.). P.hD. Universitas Hasanuddin, Makasar. [Indonesian]
Zhang H., Y. Liu, and G. Wang. (2019). Integrated Use Of Maize Bran Residue For One-Step Phosphate Bio-Fertilizer Production. Appl Biochem Biotechnol, 187: 1475–1487. DOI: 10.1007/s12010-018-2874-4
Yanti, Y., Hamid, H., Nurbailis, Hermeria, N., and Tanjung, M.T. 2021. Utolization of Trichoderma sp as Disease Control and Increasing Production of Rice Plaant in Nagari Simabur, Pariangan,Tanah datar. Jurnal Hilirisasi IPTEKS. 4(4). 187-196
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal of Soilscape and Agriculture

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.